Отображения в пространстве R(p1,p2)

) §1. Пространство R(p1,p2).

А1- аффинная прямая. Отнесем прямую А1 к подвижному реперу r = {a,` e}, где а и` e соответственно точка и вектор.

Деривационные формулы репера r имеют вид:

d a= q ` e , d` e= W` e (1),

причем формы Пфаффа q и W подчиняются уравнениям структуры 1-мерного аффинного пространства :

D q = q Щ W , DW=WЩ W=0.

Пусть e* - относительная длина вектора e* =` e + d` e + 1/2d2` e + 1/6d3` e +... по отношению к вектору ` е. Тогда ` e* =e*` e. Из (1) получаем :e* =1+W+... Таким образом, форма Пфаффа W является дифференциалом относительной длины вектора ` e* , близкого к ` e , по отношению к ` e.

Пусть R(p1,p2) – пространство всех пар (p1,p2) точек p1,p2 прямой А1. Поместим начало а репера r в середину Q отрезка р1р2, а конец вектора ` е – в точку р1; при этом р2 совместится с концом вектора -` е.

Условия стационарности точек р1 и р2 в таком репере имеют соответственно вид: W+q =0, -W+q =0.

Таким образом , в репере r структурными формами пространства R(р1,р2) являются формы Пфаффа : W+q , -W+q .

Очевидно, что dim R(p1,p2)=2. Заметим ,что в репере r форма 2W является дифференциалом относительной длины отрезка р1*р2*, близкого к р1р2,по отношению к р1р2.

§ 2. Отображение f.

А2 – аффинная плоскость , отнесенная к подвижному реперу R={p,` ej}. Деривационные формулы репера R и уравнения структуры плоскости А2 имеют соответственно вид :dp=Wjej ; d` ej= Wj k;

DWj=Wk^Wkj ; DWj=Wjy^Wyk .

Рассмотрим локальное дифференцируемое отображение f плоскости А2 в пространстве R(p1,p2):f:A2® R(p1,p2).

Будем считать , что в каждой точке области определения отображения f выполняется : rang f=2 (1)

Поместим начало Р репера R в точку f-1(p1,p2). Тогда дифференциальные уравнения отображения f запишутся в виде :

Q+W=l jWj ; Q-W=m jWj (2)

Из (1) вытекает , что существует локальное дифференцируемое отображение f-1: R(p1,p2)® A2 обратное к f.В указанных реперах дифференциальные уравнения отображения f-1 имеют вид :

Wj=l j(Q+W)+m j(Q-W) (3)

Из (2) и (3) получаем :

l kl j+m km j=d jk

l jl j=1

m jm j=1 (*)

l jm j=0

m jl j=0

Указанную пару {r;R} реперов пространств А1 и А2 будем называть репером нулевого порядка отображения f.

§3.Фундаментальные геометрические объекты отображения f.

Осуществим продолжение системы (2) дифференциального уравнений отображения f.

D(λjWj-W-Q)=0,

получаем :

dλj=λkWjk+14(λjμk-λkμj)Wk+λjkWk

D(μjWj+W-Q)=0

получаем :

dμj=μkWjk+14(λjμk-λkμj)Wk+μjkWk

Итак, продолженная система дифференциальных уравнений отображения f имеет вид:

Q+W=λjWj

Q-W=μjWj

dλj=λkWjk+14(λjμk-λkμj)Wk+λjkWk

dμj=μkWjk+14(λjμk-λkμj)Wk+μjkWj

Из этих уравнений вытекает, что система величин Г1={λj,μj} является геометрическим объектом. Он называется фундаментальным геометрическим объектом первого порядка отображения f. Осуществим второе продолжение системы (2) :

dλk^Wjk+λkdWjk+14(λjμk-λkμj)^Wk+14(λjμk-λkμj)dWk+dλjk^Wk+λjkdWk=0.

получим:

(dλjt-λktWjk-λjkWtk+14(λkμjt-μkλjk)Wk+116λtμk(λj-μj)Wk)^Wt=0

dμk^Wjk+μkdWjk+14d(λjμk-λkμj)^Wk+14(λjμk-λkμj)dWk+dμjk^Wk+μjkdWk=0

получим:

(dμjt-μktWjk-μjtWtk+14(λkμjt-μkλjt)Wk+116λtμk(λj-μj)Wk)^Wt=0

обозначим:

λj=dλj-λtWjt

μj=dμj-μtWjt

λjk=dλjk-λtkWkt-λjtWkt

μjk=dμtkWjt-μjtWkt

Тогда дважды продолженная система дифференциальных уравнений отображения f примет вид:

Q+W=λjWj

Q-W=μjWj

dλj=λkWjk+14(λjμk-λkμj)Wk+λjkWk

dμj=μkWjk+14(λjμk-λkμj)Wk+μjkWk (4)

λjk=(14(μαλjk-λαμjk)+116λkμα(μj-λj)+λjkα)Wα

μjk=(14(μαλjk-λαμjk)+116λkμα(μj-λj)+μjkα)Wα

Из уравнений (4) вытекает, что система величин Г2={λj,μj,λjk,μjk} образует геометрический объект. Он называется фундаментальным геометрическим объектом второго порядка отображения f. Дальнейшее продолжение системы (2) приведет к фундаментальному геометрическому объекту ГР порядка р :

ГР={λj,μj,λj1j2,μj1j2,...,λj1j2...jp,μj1j2...jp}.

§ 4. Векторы и ковекторы первого порядка.

Из системы дифференциальных уравнений (5) вытекает, что система величин {λj},{μj} образует подобъекты геометрического объекта Г1. Будем называть их основными ковекторами 1-го порядка. Основные ковекторы определяют для каждой точки P две инвариантные прямые:

λjXj=1 ; μjXj=1 (6)

не инцидентные точке Р. Из условия rang f=2 и уравнения (2) вытекает, что прямые (6) не параллельны. Условия (*) показывают, что величины {λj,μj} являются компонентами матрицы ,обратной к матрице, составленной из координат основных ковекторов. Таким образом , величины {λj,μj} охватываются объектом Г1.

Из (*) получаем:

dλj=-λkWkj-14(λj+μj)μtWt-λktλkλtWt-μktWt^λkμj

dμj=-μkWkj-λktμkλjWt-μktμkμjWt+14λt(λj+μj)Wt

Таким образом , система величин и образуют геометрические объекты, охваченные объектом Г1. Будем называть их основными векторами 1-го порядка.

Предположение 1.Конец вектора v1=λjej (вектора v2=μjej) лежит на прямой (6). Доказательство вытекает из формул (*),(2). Прямые, параллельные прямым (6), инцидентные точке Р, определяются соответственно уравнениями:

λjXj=0 , μjXj = 0 (7).

Предположение 2. Основные векторы {λj} и {μj} параллельны прямым (6) соответственно. Доказательство вытекает из формул (*) и (7). Взаимное расположение рассмотренных векторов и прямых представлено на рисунке:

Отображения в пространстве R(p1,p2)

Система величин ρj=λj-μj образует ковектор: dρj=ρkWjk+(μjk-λjk)Wk.

Определяемая им прямая ρjXj=0 (8) проходит через точку Р и точку пересечения прямых (6).

Пусть W-однородное подмногообразие в R(p1,p2) содержащее элементы (р1,р2) определяемое условием: (р1*,р2*)∈W↔p1*p2*=p1p2.

Теорема 1.Прямая (8) является касательной в точке Р к прообразу f-1(W) многообразия W при отображении f.

Доказательство:

) (p1*,p2*)∈W и p1*=p1+dp1+12d2p1+... ,

p2*=p2+dp2+12d2p2+... .

Тогда в репере Г: p1*p2*=e p1p2, где e=1+2W+... является относительной длиной отрезка р1*р2* по отношению к р1р2. Таким образом, (р1*р1*)∈W↔W=0.

Из (2) получим: W=ρ1Wj

Следовательно, (р1*р2*)∈W равносильно ρjWj=0 (9)

Из (8) и (9) вытекает доказательство утверждения.

При фиксации элемента (р1,р2)∈R(p1p2) определяется функция h: (p1*p2*)∈h(p1p2)→e∈R, так, что р1*р2*=е р1р2

В дальнейшем эту функцию будем называть относительной длиной. Т.о., линия f-1(W) является линией уровня функции h. Заметим, что (9) является дифференциальным уравнением линии f-1(W).

)W1,W2- одномерные многообразия в R(p1p2), содержащие элемент (р1р2) и определяемые соответственно уравнениями:

(p1*,p2*)єW1↔p2*=p2.

(p1*,p2*)єW2↔p1*=p1.

Следующая теорема доказывается аналогично теореме 1.

Теорема 2. Прямая (7) является касательной в точке P к прообразу многообразия W2 (многообразия W1) при отображении f.

Дифференциальные уравнения линии f-1(W1) и f-1(W2) имеют соответственно вид:

λjWj=0

μjWj=0.

Пусть W0- одномерное подмногообразие в R(p1p2), содержащее (р1р2) и определяемое условием: (p1*p2*)єW0↔Q*=Q ,где Q*– середина отрезка р1*р2*. Следующее утверждение доказывается аналогично теореме 1.

Предложение 3. Прямая (λj+μj)X-j=0 (10) является касательной в точке Р к прообразу f-1(W0) многообразия W0 при отображении f. Дифференциальное уравнение линии f-1(W0) имеет вид: (λj+μj)Wj=0.

Теорема 3.Прямые, касательные в точке Р к многообразиям f-1(W1), f-1(W2), f-1(W), f-1(W0) составляют гармоническую четверку.

Доказательство вытекает из (7),(8),(10).

§5. Точечные отображения, индуцируемые отображением f.

Рассмотрим отображения:

П1: (р1,р2)∊R(p1,p2)→p1∊A1 (5.1)

П2: (р1,р2)∊R(p1,p2)→p2∊A1 (5.2)

Отображение f: A2→R(p1,p2) порождает точечные отображения:

φ1=П1∘f: A2→A1 (5.3)

φ2=П2∘f: A2→A1 (5.4)

В репере нулевого порядка дифференциальные уравнения отображений φ1 и φ2 меют соответственно вид (2.5 а) и (2.5 б). Подобъекты Г1,2={λj,λjk} и Г2,2={μj,μjk} объекта Г2 являются фундаментальными объектами второго порядка отображений φ1 и φ2.

В работе <4> доказано, что разложение в ряд Тейлора отображений имеет соответственно вид:

x=1+λjXj+1/2λjkXjXk+1/4λyρkXjXk+<3>, (5.5)

y=-1+μjXj+1/2μjkXjXk+1/4μyρkXjXk+<3>, (5.6)

Введем системы величин:

Λjk=λjk+1/4(λjρk+λkρj),

Μjk=μjk+1/4(μjρk+μkρj)

Тогда формулы (5.5) и (5.6) примут соответственно вид:

x=1+λjXj+1/2ΛjkXjXk+<3> (5.7)

y=-1+μjXj+1/2ΜjkXjXk+<3> (5.8)

В <4> доказано, что существует репер плоскости А2, в котором выполняется:

Отображения в пространстве R(p1,p2)

Этот репер является каноническим.

Таким образом, в каноническом репере Якобиева матрица отображения f является единичной матрицей.

Формулы (5.7) и (5.8) в каноническом репере примут вид:

x=1+X1+1/2ΛjkXjXk+<3> (5.9),

y=-1+X2+1/2ΜjkXjXk+<3> (5.10).

§6. Инвариантная псевдориманова метрика.

Рассмотрим систему величин:

Gjk=1/2(λjμk+λkμj)

Из (3.1) получим:

dGjk=1/2(dλjμk+λjμk+dλkμj+λkdμj)=1/2(μkλtWjt+1/4λjμkμtWt-14μkμtλtWt+μkλjtWt+λjμtWkt+

+1/4λjλkμtWt-1/4μjλkμtWt-1/4μjλtμkWt+μjλktWt+λkμtWjt+1/4λkλjμtWt-1/4λkλtμjWt+

+λkμjtWt),

dGjk=1/2(μkλt+λkμt)Wjt+1/2(λjμt+λtμj)Wkt+GjktWt,

где Gjkt=1/2(μkλjt+λyμkt+μjλkt+λkμjt-1/2μjμkλt+1/2λjλkμt-1/4λjμkλt+1/4λjμkμt+1/4μjλkμt-

-1/4μjλkλt) (6.3).

Таким образом, система величин {Gjk} образует двухвалентный тензор. Он задает в А2 инвариантную метрику G:

dS2=GjkWjWk (6.4)

Из (6.1) и (2.5) вытекает, что метрика (6.4) соответствует при отображении f метрике dS2=θ2-W2 (6.5) в R(p1,p2).

Из (6.5) вытекает, что метрика G является псевдоримановой метрикой.

Асимптотические направления определяются уравнением GjkWjWk=0 или

λjWjμkWk=0 (6.6)

Предложение: Основные векторы V1 и V2 определяют асимптотические направления метрики G.

Б. А. Розенфельдом изучалась инвариантная метрика в пространстве нуль-пар. На проективной прямой нуль-парой является пара точек. Для двух пар точек (x,U) и (y,U’) расстояние между ними определяется как двойное отношение W=(xy,UU’)

Теорема: Метрика dS2=θ2-W2 совпадает с метрикой Розенфельда .

Доказательство: В репере r имеем для координат точек p1,p2,p1+dp1,p2+dp2

Соответственно: 1,-1,1+θ+W,-1+θ-W.

Подставляя их в формулу (4.2) на стр. 344 (§7), получаем

dS2=θ2-W2

Следствие: Метрика G сохраняется при расширении фундаментальной группы ее проективных преобразований.

В работе <3> был построен охват объекта

Гljk=1/2Gtl(Gtkj+Gjtk-Gjkt)

псевдоримановой связности G фундаментальным объектом Г2={λj,μj,λjk,μjk}.

Он определяется формулой: Гljk=λjΛjk+μlΜjk-λlλtλk+μlμtμk.

§7. Инвариантная риманова метрика.

Рассмотрим систему величин:

gjk=λjλk+μjμk (7.1)

Из (3.1) получаем:

dgjk=dλjλk+dλkλj+dμjμk+dμkμj=λkλtWjt+1/4λkλjμtWt-1/4λjλtμjWt+λkλjtWt+λjλtWkt+

+1/4λjλkμtWt-1/4λjλtμkWt+λjλktWt+μkμtWjt+1/4μkλjμtWt-1/4μkλtμjWt+μkμjtWt+

+μjμtWkt+1/4μjλkμtWt-1/4μjλtμkWt+μjμktWt.

dgjk=(λkλt+μkμt)Wjt+(λjλt+μjμt)Wkt+gjktWt, (7.2)

где gjkt=1/2λjλkμt-1/2μjμkλt-1/4λkλtμj-1/4λjλtμk+1/4λjμkμt+1/4μjλkμt+λkλjt+λjλkt+

+μkμjt+μjμkt (7.3)

Таким образом, система величин {gjk} образует двухвалентный тензор. Он задает в А2 инвариантную метрику g:

dS2=gjkWjWk (6’.4)

Из (7.1) и (2.5) вытекает, что метрика (6’.4) соответствует при отображении f метрике:

dS2=2(θ2+W2) (6’.5)

в R(p1,p2)

Из (6’.5) вытекает, что метрика g является римановой метрикой.

Единичная окружность, построенная для точки Р определяется уравнением:

GjkXjXk=1 (6’.6)

или (λjXj)2+(μjXj)2=1 (6’.7)

Из (6’.7) вытекает:

Предложение 7.1: Единичная окружность метрики g с центром в точке Р является эллипсом, касающимся в концах основных векторов прямых, параллельных этим векторам.

Заметим, что сформулированное здесь свойство единичной окружности полностью определяет эту окружность, а следовательно и метрику g.

Отображения в пространстве R(p1,p2)

Пусть gjk=λjλk+μjμk (6.8)

В силу (2.7) имеем:

gjtgtk=(λjλt+μjμt)(λtλk+μtμk)=λjλk+μjμk=δkj (6’.9)

Таким образом, тензор gjk является тензором взаимных к gjk. Как известно, метрика ставит в соответствие каждому векторному полю поле ковектора и наоборот.

Предложение 7.2: Поле основного вектора {λj} (вектора {μj}) соответствует в метрике g полю основного ковектора {λj} (ковектора {μj}).

Доказательство: Основные векторы ортогональны друг другу и имеют единичную длину в метрике g.

Доказательство:

λjλkgjk=λjλkλjλk+λjλkμjμk=1,

μjμkgjk=μjμkλjλk+μjμkμjμk=1,

λjμkgjk=λjμkλjλk+λjμkμjμk=0.

Таким образом, f задает на А2 структуру риманова пространства (A2,gf).

В работе <2> был построен охват объекта

γjkl=1/2gtl(gtkj+gjtk-gjkt)

римановой связности γ фундаментальным объектом

Г2={λj,μj,Λjk,Μjk}

Он определяется формулой:

γjkl=λlΛjk+μlMjk+Gjk(λl-μl)+1/2(λl+μl)(μjμk-λjλk),

где Gjk=1/2(λjμk+λkμj).


Подобные работы:

Актуально: