Разработка макета системы персонального вызова

РЕФЕРАТ

Пояснительная записка к дипломному пpоекту "Разpаботка макета системы персонального вызова" содеpжит листов , ил­люстpаций , таблиц , использованных источников .

МАКЕТ, СИСТЕМА ПЕРСОНАЛЬНОГО ВЫЗОВА, МАГНИТНОЕ

ПОЛЕ, ВХОДНОЙ ПРЕОБРАЗОВАТЕЛЬ, АНТЕННЫЙ ДАТЧИК,

УМНОЖИТЕЛЬ ДОБРОТНОСТИ, КОНВЕРТОР.

Цель дипломного пpоекта - pазpаботать констpукцию макета системы персонального индукционного вызова, конструкцию антен­ного датчика приемника персонального вызова. Разpабатываемое устpойство пpедназначается для испытания различных типов ан­тенных датчиков и их сравнения, произвести оценку возможности применения исследуемых датчиков в сиcтемах персонального вызо­ва.

CОДЕРЖАНИЕ

Стp.

Задание на дипломный пpоект 2

Рефеpат 3

Пеpечень сокpащений, условных обозначений:

символов, единиц, теpминов 4

Введение 5

1. Обзор тематической литературы 6

1.1. Системы персонального вызова - назначение,

принципы организации, недостатки 6

1.2. Способы приема слабых низкочастотных

электромагнитных полей 10

2. Исследование индукционных датчиков магнитного поля для системы индукционного персонального вызова 25

2.1. Анализ методов повышения чувствительности индукционных датчиков магнитного поля 25

2.2. Умножители добротности антенных контуров 28

2.3. Исследование параметров индукционных датчиков 32

2.4. Макет системы персонального вызова 40

3. Исследования полупроводниковых датчиков

магнитного поля 46

3.1. Источник магнитного поля 46

3.2. Определение магниточувствительности диода 47

3.3. Определение магниточувствительности транзистора 48

4. Исследование возможности построения системы персонального вызова с использованием электрического поля 49

4.1. Принцип работы пьезоэлектрического трансформатора 49

4.2. Исследование пьезоэлектрического трансформатора 50

5. Охpана тpуда и техника безопасности 53

5.1. Анализ условий тpуда 55

5.2. Разpаботка меpопpиятий по пpиведению условий тpуда в соответствие с тpебованиями вопpосов техники безопасности, гигиены тpуда и пpоизводственной санитаpии 58

5.3. Пожаpная пpофилактика 60

5.4. Выводы 61

6. Экономическая часть 62

6.1. Назначение устройства и выбор базы для сравнения показателей качества 62

6.2. Расчет качественных показателей 62

6.3. Расчет пpедпpоизводственных затpат 64

6.4. Расчет себестоимости,договоpной цены и дохода 66

7. Гpажданская обоpона 69

Заключение 78

Список использованной литеpатуpы 79

ВВЕДЕНИЕ

Совpеменное пpоизводство pазвивается в условиях науч­но-технической pеволюции, главное содеpжание котоpой составля­ет освобождение человека от ручного труда. С автоматизацией пpоизводства пpоисходит пеpедача машинам функций упpавления.

На этой основе технический базис пpоизводства подымается на качественно новую ступень и освобождается от всех огpаниче­ний, котоpые связаны с естественными возможностями pабочей си­лы. В pезультате обеспечивается поистине безгpаничный pост пpоизводительности тpуда. Автоматизация коpенным обpазом меня­ет место человека в пpоизводстве и хаpакттеpе его тpуда. Тpуд из непосpедственного в пpоцесс пpоизводства пpевpащается в функцию контpоля и pегулиpования.

Одним из главных факторов, влияющих на производительность труда является время. Его экономия становится одной из главных задач возникающих в производстве. В целом по стране потеря да­же одной минуты обходится в миллионы рублей.

Применение систем персонального вызова позволяет в значи­тельной мере сократить потерю рабочего времени, расходуемого на поиски требуемого человека. Автоматизация поиска уменьшает это время более чем в два раза. Целью данной дипломной работы является разработка макета системы персонального вызова на основе которого исследуются новые типы антенн в приемниках ин­дивидуального вызова.

1. ОБЗОР ТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ

1.1 Системы персонального вызова - назначение, принципы организации, недостатки

Особое место в развитии промышленности отводится повышению производительности труда, совершенствованию структуры управле­ния и улучшению работы всех видов связи. Выполнение этих задач в значительной степени способствует внедрение систем персо­нального радио вызова (СПРВ).

В различных отраслях производства, на транспорте и в сфере обслуживания связь между работниками, по специфике связанными с пребываниями на каких-либо объектах или с передвижением по городу, может осуществляться с помощью радиотелефонной аппара­туры. Сложность реализации такой связи определяется ограничен­ностью и занятостью диапазона радиочастот, громоздкостью и до­роговизной аппаратуры. Использование же СПРВ позволяет избе­жать указанных трудностей и недостатков и осуществить избира­тельный вызов по узкополосному каналу любого из абонентов, свободно передвигающегося в пределе города и его окреснностей. При вызове, принимаемом миниатюрным абоненским приемником кар­манного типа, извещаемый абонент использует ближайший телефон для переговоров.

Таким образом, в отличии от "классической" системы радио­вызова (с передвижными приемопередатчиками), СПРВ, рационально сочетающиеся с телефонной сетью, более доступны для значитель­ного числа абонентов.

СПРВ завоевали широкое признание во многих странах мира. Общее число абонентов таких систем в мире исчисляется миллио­нами. Наряду с СПРВ городского типа запланированы разработки систем государственных и континентальных масштабов. Построение СПРВ может осуществляться многообразными формами и методами о чем свидетельствует ряд разработок, таких как "Bellboy" (США), "Multiton"(Великобритания), "Poket Bell"(Япония) и другие. Исследования в области отыскания оптимальных форм и методов построения таких систем являются актуальной проблемой.

Использование радиоканала в СПРВ для передачи односторон­него селективного вызова каждому из множества абонентов позво­ляет отнести эту систему к классу адресных. К тому же, так как все характеристики таких систем зависят от количества абонен­тов и размеров зоны действия, работы, проводимые по созданию СПРВ, можно разделить на два направления. Первое - разработка систем вызова для отдельных предприятий с малым радиусом действия и небольшим числом абонентов (до 500). Второе направ­ление - создание СПРВ с зоной действия, определяемой размерами города и его окрестностей или более крупных регионов с числом абонентов, достаточным для удовлетворения потребительского спроса в этой зоне. Как правило, в таких СПРВ используют УКВ передатчик, расположенный в центре зоны обслуживания. Передача сигналов вызова в этой зоне обеспечивается в пределах радиуса действия передатчика, поэтому такие системы можно еще отнести к классу радиальных. Рассмотрим принципы построения нескольких крупных СПРВ.

Одной из первых крупных разработок была "Система персо­нального вызова на УКВ" (США), работающая в диапазонах 20...50 и144...174 МГц. Структурная схема такой системы представлена на рис.1.1.

Каждый из пультов управления 1 является контрольно-комму­тирующим устройством. Один из диспетчеров набирает четырехз­начный номер абонента, сигнал после коммутации передается в виде двоичного кода в кодирующее устройство 2, здесь он преоб­разуется в кодовые посылки вызова и поступает к передатчику 3. Излучаемые радиосигналы вызова включают звуковую сигнализацию миниатюрного приемника 4, находящегося у абонента. Услышав сигнал, абонент нажимает на приемнике кнопку прослушивания и слышит сообщение,которое передает диспетчер вслед за передачей сигнала вызова. В рассматриваемой системе принято кодирование сигналов вызова по частотным признакам с использованием мно­жества тональных (кодовых) частот. Для хорошей надежности при­ема сигналов вызова, особенно когда вызываемый абонент перед­вигается в зоне стоячих волн, комбинация частот вызова переда­ется дважды с интервалом 3 секунды. Приемное представляет со­бой связной супергетеродинный приемник с двойным преобразова­нием частоты, имеющий карманные размеры и снабженный декодиру­ющим устройством, подключенному к выходу дискриминатора.

Важным шагом в дальнейшем развитии принципов построения и структуры персонального вызова явилась система "Bellboy"(США). Кодирующее устройство этой системы представляет собой так на­зываемую контрольно-оконечную станцию (терминал), которая не­посредственно связана с городской телефонной сетью.

Вызов абонента осуществляется с помощью обычного телефон­ного аппарата. Набирается семизначный номер, первые три цифры которого соединяют вызывающего с системой СПРВ, а последние четыре указывают номер вызываемого абонента. Полученные в тер­минале кодовые кодовые сигналы вызова посылаются одним или несколькими радиопередатчиками. На рисунке 1.2 показана струк­турная схема системы "Bellboy". Здесь 1-телефонная сеть, 2- терминал радиовызова, 3- радиопередатчик, 4-приемники. Сигналы радиовызова в системе "Bellboy" передаются ЧМ передатчиком на частоте 145 МГц с девиацией 1.3 КГц.

Широкое распространение получила СПРВ "Multiton" (Великоб­ритания). Эта система применяется более чем в 70-ти странах, в том числе и в бывшем СССР. Эта фирма претендует на авторство самой первой разработки СПРВ.

Система "Multiton" может работать (в зависимости от составляющего ее оборудования) так с небольшим количеством абонентов (до 870), так и обеспечивая обслуживание целых горо­дов с числом абонентов до 10 тысяч. Существуют варианты "Multiton" с передачей речевого сообщения или с передачей до­полнительной информации в виде отдельных звуковых тонов или цифровой индикацией в приемниках вызова. В системах с большим количеством абонентов используется двоично-цифровое кодирова­ние (ДЦК). В отличии от частотного ДЦК основано не на многооб­разии частотных признаков тональных сигналов вызова, а на использовании бинарных сигналов, отражающих запись номера (цифр) вызова в двоичном исчислении. При этом бинарные сигналы могут формироваться непосредственно манипуляцией частоты пере­датчика, например частотной, фазовой или амплитудной модуляци­ей. В системах "Multiton" используется частотная модуляция. Поскольку указанные бинарные системы можно отнести к классу цифровых, то СПРВ с ДЦК часто называют цифровыми системами.

Из отечественных СПРВ можно выделить систему "Луч-1В". Эта система рассчитана для использования на отдельных предприяти­ях, но возможно применение нескольких передатчиков (до шести), что позволяет значительно расширить зону действия системы. Используемые в этой СПРВ цифровые сигналы радиовызова (ДЦК с частотной модуляцией)рассчитаны на передачу абоненту двух ти­пов вызовов (индивидуального и группового) и дополнительной информации в виде одноцифровой команды.

Все рассмотренные выше системы персонального вызова осно­вываются на передаче сигнала вызова в УКВ диапазоне на часто­тах 20-200 МГц. Радиосвязь на УКВ широко используется для свя­зи с передвигающимися автомашинами, тогда, когда необходимо обеспечить охват системой большой площади (например в пределах города). Несмотря на свои достоинства, системы с радиовызовом имеют ряд существенных недостатков:

а) воздействие на другие системы беспроводной радиосвязи;

б) возможность прослушивания передаваемой информации за пре­делами предусмотренной для связи территории;

в) невозможность использовать под землей (шахты);

г) наличие ярко выраженной "тени", возникающей в следствии эк­ранировки радиосигналов стальными конструкциями зданий, круп­ным станочным оборудованием.

Индуктивная связь является альтернативой радиосвязи. Она избавлена от этих недостатков, хотя обладает другими. Индук­тивная связь - это беспроволочная связь,основанная на приеме магнитного поля и действующая в заданных пределах предприятия или цеха. В тех случаях, когда перекрываемые индуктивной связью расстояния и площади удовлетворяют предприятие или ор­ганизацию, этот вид связи, действуя в определенных територи­альнных границах объекта, имеет ряд преимуществ перед ради­освязью на УКВ.

Магнитное поле низкой частоты (до 100 КГц), получаемое с помощью проволочной петли (шлейф), принимается индивидуальными приемниками, представляющие собой датчик НЧ магнитного поля, усилитель и декодер сигнала вызова. Декодер может применятся тот же, что и в системах СПРВ, усилитель должен обеспечивать параметры (усиление, коэфициент шума и другие), необходимые для нормальной работы декодера. Особого рассмотрения требуют датчики магнитного поля, характеристики которых в значительной степени определяют параметры всей системы.

1.2. Способы приема слабых электромагнитных низкочастотных полей

Для приема слабых низкочастотных злектромагнитных полей применяется множество методов. Одни из них рассчитаны на ре­гистрацию электрической составляющей электромагнитного поля, другие - магнитной. В данном случае нас интересуют методы ре­гистрации магнитного поля.

Одним из главных компонентов в системе регистрации магнит­ного поля являются датчики. Они во многом определяют параметры системы, самый главный из которых - чувствительность. Методы создания магнитных датчиков базируются на многих аспектах фи­зики и электроники. Существует 11 наиболее применяемых методов обнаружения магнитного поля. Это следующие методы:

1) индукционный;

2) с насыщенным сердечником;

3) ядерной прецессии;

4) оптической накачки;

5) СКВИД;

6) на основе эффекта Холла;

7) магниторезистивный;

8) магнитодиодный;

9) магнитотранзисторный;

10) с использованием волоконных световодов;

11) магнитооптические.

Рассмотрим конструкцию каждого датчика.

1.2.1. Индукционные датчики.

Наиболее распространенным преобразователем напряженности магнитного поля является индукционный датчик, типичным приме­ром которого служит приемная рамка, работающая на принципе электромагнитной индукции. Конструктивно выполняется два типа рамок:

1) без сердечника - один или множество витков провода имеющих форму круга или прямоугольника (рис. 1.3а);

2) с сердечником - провод наматываеся на материал с высокой магнитной проницаемостью (рис. 1.3б).

Использование сердечников значительно увеличивает магнит­ный поток, пронизывающий рамку, и обеспечивает тем самым более высокую чувствительность преобразователя. При одинаковой чувствительности по напряженности магнитного поля рамки с сер­дечником обычно существенно меньше, чем рамки без сердечника.

Как известно, ЭДС индуцируемая магнитным полем в катушке равна

e = - -- cos (1)

где Ф= SH sin( t+ ) - магнитный поток, пронизывающий витки

рамки;

- магнитная проницаемость сердечника;

S - площадь поперечного сечения сердечника или витка воз­душной рамки.

При приеме высокочастотных полей обычно пользуются поняти­ем действующей высоты рамки h , определяющей по существу ее чувствительность в режиме холостого хода к электрической составляющей электромагнитного поля. Для рамки без сердечника

h = ----- (2),

Q = --- (3).

Как и любая катушка индукционная рамка имеет распределен­ную межвитковую емкость обмотки С . Величина ее зависит от многих факторов и не поддается расчету. Экспериментально С можно найти определяя резонансные частоты рамки f при несколь­ких значениях внешней емкости Свн и используя формулу Томпсона

-- = 4* *L*(Cвн - С ) (4).

Индукционные датчики магнитного поля являются одними из наиболее чувствительных датчиков. С их помощью можно регистри­ровать поля напряженностью от 10Е-14 А/м в диапазоне до нескольких МГц.

1.2.2. Датчики с насыщенным сердечником.

Датчики этого типа также называют магнитомодуляционными и феррозондами. В основном они применяются для измерения посто­янных магнитных полей, но эти же датчики можно использовать и для измерения напряженности переменных магнитных полей низких частот (Fmax=10 КГц).

Датчик с насыщенным сердечником представляет собой уст­ройство состоящее из одного или двух сердечников из высокопро­ницаемого магнитомягкого материала с распределенными по длине обмотками (рис. 1.4).

Принцип действия основан на периодическом изменении прони­цаемости сердечников с помощью вспомогательного переменного магнитного поля. Обмотка возбуждения питается от специального источника переменного тока. Величина тока выбирается такой, что создаваемое им поле в определенную часть периода обеспечи­вает в сердечнике состояние насыщения. При этом магнитные ли­нии измеряемого поля "выталкиваются" из сердечника, пересекая при этом выходную катушку и в ней индуцируется Э.Д.С., которая зависит от величины измеряемого поля. Обычно на выходе стоит фильтр, выделяющий вторую гармонику частоты возбуждения. Так как при напряженности поля равном нулю она также равна нулю, то по ее амплитуде судят о величине измеряемого магнитного по­ля. Нижний предел измеряемых магнитных полей датчика с насы­щенным сердечником равен 10Е-12 А/м.

1.2.3. Магнитометр с оптической накачкой.

Магнитометр с оптической накачкой основан на эффекте Зее­мана. В 1896 году голландский физик П.Зееман показал,что неко­торые из характеристических спектральных линий атомов расщеп­ляются, когда атомы помещены в магнитное поле; одна спектраль­ная линия расщепляется в группу линий с несколькими различаю­щимися длинами волн. Особенно этот эффект выражен в щелочных элементах, например, в цезии.

В магнитометре с оптической накачкой используются 3 энер­гетических состояния, возможных для единственного валентного электрона цезия: 2 низких близкорасположенных состояния и одно состояние с более высокой энергией. Разница энергий между бо­лее низкими состояниями соответствует радиочастотным спект­ральным линиям, а переход между одним из более низких состоя­ний и более высоким состоянием соответствует спектральной ли­нии в оптической области.

Рассмотрим пары цезия при оптической накачке света с кру­говой поляризацией. Количество света, поглощаемое парами, из­меряется при помощи фотодетектора. Первоначально некоторые электроны в парах будут находиться в одном из низких энергети­ческих состояний и некоторые - в другом. Когда атомы поглощают фотоны света с круговой поляризацией, их угловой момент обяза­тельно меняется на единицу. Таким образом, электроны, находя­щиеся в энергетическом состоянии, отличающемся от более высо­кого состояния на единицу углового момента, будут поглощать фотоны и переходить в более высокое состояние, а находящиеся в энергетическом состоянии с таким же угловым моментом, как и в более высоком состоянии, - не будут. Поскольку некоторые фото­ны поглощаются, сила света уменьшится. Электрон, находящийся в более высоком состоянии, почти немедленно переходит в одно из более низких состояний. Каждый раз, когда электрон совершает этот переход, существует некоторая вероятность того,что он пе­рейдет в состояние, в котором невозможно поглощение света. При достаточном времени почти все электроны перейдут в такое состояние. Пар, про который тогда говорят, что произошла его полная накачка, относительно прозрачен для света.

Если затем параллельно лучу света наложить ВЧ-поле, то оно перебросит электроны, изменяя при этом их спиновый угловой мо­мент. Фактически РЧ-поле заставляет электроны перебрасываться из одного более низкого состояния в другое, "расстраивая" оп­тическую накачку. Как следствие, пар вновь начинает поглощать свет. Радиочастотные и оптические эффекты объединяются, давая особенно острый резонанс, и именно на этом резонансном явлении работает магнитометр с оптической накачкой.

Энергия, требуемая для опрокидывания спина электрона, и, следовательно, частота ВЧ-поля, зависят от силы магнитного по­ля. В магнитометре контур обратной связи управляет радиочасто­той для поддержания минимального пропускания света. Таким об­разом, частота как бы служит мерой магнитного поля. Магнито­метр с оптической накачкой измеряет общее магнитное поле любой ориентации в отличие от большинства магнитометров, которые из­меряют только составляющую магнитного поля, лежащую вдоль чувствительной оси.

Чувствительность и динамический диапазон этого магнитомет­ра подобно большинству магнитометров определяется регистрирую­щей электроникой. Типичные значения чувствительности прибора имеют предел от 10Е-14 до 10Е-6 А/м.

Датчик имеет большие габариты и высокое потребление мощ­ности (несколько ватт). Конструкция оптического магнитометра показана на рис. 1.5.

1.2.4. Ядерный прецессионный магнитометр.

В ядерном прецессионном магнитометре используется реакция ядер атомов в жидких углеводородах, например бензоле, на воз­действие магнитного поля. Протоны в ядрах атомов можно рассматривать как малые магнитные диполи; поскольку они враща­ются и обладают электрическим зарядом, у них есть небольшой магнитный момент, подобный в некоторых отношениях угловому мо­менту вращающегося гироскопа. С помощью однородного магнитного поля, создаваемого при прохождении тока через катушку, протоны в жидкости могут быть временно выстроены в ряд. Когда поляри­зационный ток выключается, происходит прецессия протонов от­носительно окружающего магнитного поля. Ось спина протона, не выстроенного постоянным магнитным полем, подобно оси гироскопа вне линии гравитационного поля, проходит по окружности относи­тельно линии, параллельной полю. Скорость прохождения, называ­емая частотой прецессии, зависит от силы измеряемого магнитно­го поля. Прецессирующие протоны генерируют в катушке сигнал, частота которого пропорциональна величине магнитного поля. Конструкция этого магнитометра показана на рис. 1.6.

Ядерный прецессионный магнитометр имеет диапазон чувстви­тельности от 10Е-13 до 10Е-4 А/м, а их частотный диапазон ог­раничен стробирующей частотой жидкого водорода.

1.2.5. СКВИД-датчик.

Сверхпроводящий квантовый интерференционный датчик (СКВИД) является самым чувствительным датчиком магнитного поля. Это устройство основано на взаимодействии электрических токов и магнитных колебаний, наблюдаемых при охлаждении материала ниже температуры перехода в сверхпроводящее состояние. Конструкция датчика приведена на рис. 1.7.

Если линии магнитного поля проходят через кольцо из сверх­проводящего материала то в нем индуцируется ток. При отсутствии возмущений ток будет протекать сколько угодно дол­го. Величина индуцированного тока является весьма чувствитель­ным индикатором плотности потока поля. Кольцо может реагиро­вать на изменение поля, соответствующее долям одной квантовой единицы магнитного потока. При наличии в кольце тонкого пере­хода (переход Джозефсона) в нем наблюдаются колебания тока. Кольцо соединяют с ВЧ схемой, которая подает известное поле смещения и детектирует выходной сигнал. При взаимодействии двух двух волн образуется итерференционные полосы, подобно световым волнам. Подсчет полос позволяет с высокой точностью определить величину магнитного поля.

Кольцо изготавливают из свинца или ниобия диаметром несколько миллиметров. Для увеличения чувствительности его иногда включают в более крупную катушку. Диапазон измеряемых полей равен от 10Е-16 до 10Е-10 А/м.

1.2.6. Магниторезисторы.

Магниторезисторами называют полупроводниковые приборы, сопротивление которых меняется в магнитном поле. Поскольку эф­фект магнитосопротивления максимален в полупроводнике не огра­ниченом в направлении перпендикулярному току, то в реальных магниторезисторах стремятся максимально приблизится к этому условию. Наилучшим типом неограниченного образца является диск Карбино (см. рис. 1.8а).

Отклонение тока в таком образце при отсутствии магнитного поля нет и он направлен строго по радиусу. При наличии поля путь носителей заряда удлиняется и сопротивление увеличива­ется. Другой структурой магниторезистора является пластина ши­рина которой много больше длины (рис. 1.8б). Эти две структуры обладают наибольшим относительным изменением сопротивления в магнитном поле. Однако их существенным недостатком является малое абсолютное сопротивление при B=0, что обусловлено их конфигурацией. Для увеличения R применяют последовательное соединение резисторов. Например, в случае пластины использу­ется одна длинная пластина из полупроводника с нанесенными ме­таллическими полосками, делящими кристалл на области длина ко­торых меньше ширины. Таким образом, каждая область между по­лосками представляет собой отдельный магниторезистор.

Магниторезисторы обладают довольно большой чувствитель­ностью. Она лежит в пределах от 10Е-13 до 10Е-4 А/м. Наиболь­шей чувствительностью обладают магниторезисторы изготовленные из InSb-NiSb.

1.2.7. Магнитодиоды.

Магнитодиод представляет собой полупроводниковый прибор с p-n переходом и невыпрямляющими контактами, между которыми на­ходится область высокоомного полупроводника. Структура и ти­пичная ВАХ "торцевого" магнитодиода приведена на рис. 1.9.

Действие прибора основано на магнитодиодном эффекте. В "длинных" диодах (d/L >> 1, где d - длина базы, L - эффективн­ная длина дифузионного смещения ) распределение носителей, а следовательно сопротивление диода (базы) определяется длиной L Уменьшение L вызывает понижение концентрации неравновесных носителей в базе, т. е. повышение ее сопротивления. Это вызы­вает увеличение падения напряжения на базе и уменьшение на p-n переходе (при U=const). Уменьшение падения напряжения на p-n переходе вызывает снижение инжекционного тока и следовательно дальнейшее увеличение сопротивление базы. Длину L можно изме­нять воздействуя на диод магнитным полем. Оно приводит к зак­ручиванию движущихся носителей и их подвижность уменьшается, следовательно уменьшается и L. Одновременно удлиняются линии тока, т. е. эффективная толщина базы растет. Это и есть магни­тодиодный эффект.

Нашей промышленностью выпускается несколько типов магнито­диодов. Их чувствительность лежит в пределах 10Е-9 до 10Е-2 А/м. Существуют также магнитодиоды способные определять не только напряженность магнитного поля но и его направление.

1.2.8. Магнитотранзисторы.

Существует множество типов магнитотранзисторов. Они могут быть и биполярными, и полевыми, и однопереходными. Но наиболь­шей чувствительностью обладают двухколекторные магнитотран­зисторы (ДМТ). Структурная схема и способ включения ДМТ пока­заны на рис. 1.10.

ДМТ - это четырех электродные полуроводниковые приборы планарной или торцевой топологии. Инжектирующий контакт, эмит­тер, расположен между симметричными коллекторами. Четвертый контакт - базовый. Магнитное поле в зависимости от направления отклоняет инжектированные носители к одному из коллекторов и изменяет распределение токов между коллекторами. Разность то­ков коллекторов и определяет величину измеряемого магнитного поля. Она пропорциональна индукции магнитного поля, а знак по­казывает его направление. В области слабых полей ДМТ обладает очень высокой магниточувствительностью и хорошей линейностью ампер-тесловой характеристики. Они используются в аппаратуре требующей измерения индукции и знака магнитного поля, напри­мер, в магнитных компасах. В основном используются кремний и германий. Чувствительность магнитотранзисторов лежит в преде­лах 10Е-8 до 10Е-4 А/м.

1.2.9. Датчик на эффекте Холла.

Рассмотрим пластину полупроводника р-типа через которую протекает ток, направленный перпендикулярно внешнему магнитно­му полю. Сила Лоренца отклоняет дырки к верхней грани пласти­ны, в следствии чего их концентрация там увеличивается, а у нижней грани уменьшается. В результате пространственного раз­деления зарядов возникает электрическое поле, направленное от верхней грани к нижней. Это поле препятствует разделению заря­дов и, как только создаваемая им сила станет равной силе Ло­ренца, дальнейшее разделение зарядов прекратится (рис. 1.11).

Разность потенциалов между верхней и нижней гранями образ­ца равна :

V = E*a = v*B*a,

где а - ширина образца в направлении протекания тока, B - напряженность магнитного поля, v - скорость носителей. Наибо­лее существенное достоинство датчика Холла при измерении им напряженности магнитного поля - это линейность измеряемого напряжения от индукции магнитного поля. Датчики работают в ди­апазоне от 10Е-5 до 1 А/м.

Датчики Холла изготавливают либо из тонких полупроводнико­вых пластин, либо из напыленных тонких пленок. Для изготовле­ния используются полупроводники с высокой подвижностью носите­лей заряда.

1.2.10. Волоконно-оптический магнитомер. Волоконно-оптический магнитомер (ВОМ) представляет собой

новый вид датчика, который находится еще в процессе разработ­ки. В нем используются два стекловолоконных световода, образу­ющих интерферометр Маха-Цандера. Луч лазера проходит через светоделитель в оба волокна и рекомбинирует в сумматоре, поступая затем на фотодетектор в конце каждого волокна. Один из световодов либо намотан на магнитострикционный материал, либо покрыт им. Размеры магнитострикционного материала зависят от степени его намагничености. Когда такой материал намагничи­вается внешним полем, длина волокна изменяется. При изменении (на долю длины волны) луч, проходящий через световод, приходит в сумматор со сдвигом по фазе относительно луча, проходящему по эталонному световоду. Интенференция двух световых волн вы­зывает изменение уровня света на фотодетекторах, величина ко­торого равна разности фаз.

ВОМ имеет чувствительность от 10Е-15 до 10Е-5 А/м. Он мо­жет использоваться для обнаружения либо постоянных полей, либо полей, меняющихся с частотой до 60 КГц. Его размеры зависят от требуемой чувствительности, но обычно он имеет около 10 см в длину и 2.5 см в ширину. Большим недостатком является сильные шумы и чувствительность к вибрациям. Конструкция ВОМ показана на рис. 1.12.

1.2.11. Магнито-оптический датчик.

В магнито-оптическом датчике (МОД) используется эффект от­крытый Фарадеем. Этот эффект заключается во вращении плоскости поляризационного света при прохождении через магнитный матери­ал. Эффект максимально выражен в некоторых кристаллах при юстировке направления распространения света, оси кристалла и приложенного магнитного поля. Примем, что плоская волна поля­ризационного света составлена из двух волн с круговой поляри­зацией - правополяризованной (ПП) и левополяризован ной (ЛП). Вращение плоскости поляризации плоской волны происходит за счет изменения относительных фаз ПП и ЛП волн. Тогда эффект Фарадея является результатом изменения показателя преломления кристалла, зависящего от того, происходит ли прецессия элект­ронов в кристалле относительно продольного магнитного поля в том же самом или в противоположном направлении, что и вращение электрического поля света с круговой поляризацией.Коэффициен­том, определяющем степень эффективности материала, является постоянная Верде, имеющая размерность единиц углового вращения на единицу приложенного поля и на единицу длины.

Важным преимуществом этих датчиков являются их очень малая инерционность и широкая полоса частот на которых они работают. Были изготовлены датчики с гигагерцовой частотной характе­ристикой. Нижний предел чувствительности датчиков равен 10Е-6 А/м . Конструкция МОД показана на рис. 1.13.

1.2.12. Выводы.

Рассмотpим условия которым должны удовлетворять датчики магнитного поля пpименяемые в системе пеpсонального вызова с индуктивной связью.

Во-пеpвых, датчик должен обладать достаточной чувствитель­ностью к магнитному полю, чтобы быть способным пpинять слабые сигналы вызова. В таблице 1.1 пpиведены пpимеpные диапазоны чувствительности пpиведенных pанее датчиков. По этому паpаметpу можно исключить из pассмотpения следующие мало­чувствительные датчики: Холла, магнитооптический, магнитодиод, магнитотpанзистоp.

Во-втоpых, датчик магнитного поля должен обладать малыми pазмеpами, нечувствительностью к внешним воздействиям и малой потpкбляемой мощностью. По этим пpизнакам исключаются датчики:

1) СКВИД, так как тpебует охлаждения жидким гелием, что невозможно в пеpсональном пpиемнике;

2) с оптической накачкой - тpебует мощного питания;

3) ядеpно-пpецессионный - большая потpебляемая мощность;

4) волоконно-оптический - сильно чувствителен к вибpации и механическим воздействиям;

5) с насыщенным сеpдечником - низкая чувствительность к пеpеменным магнитным полям.

В итоге остается два типа магнитных датчиков : индукцион­ный и магнитоpезистивный. Taк как магнитоpезистоpы остаются все еще довольно дефицитным полупpоводниковым пpибоpом и пpиобpести их для пpоведения исследований не пpедставляется возможным, то в дальнейшем в макете СПИВ используется только индукционный датчик магнитного поля.

2. ИССЛЕДОВАНИЕ ИНДУКЦИОННЫХ ДАТЧИКОВ МАГНИТНОГО ПОЛЯ

ДЛЯ СИСТЕМЫ ИНДУКЦИОННОГО ПЕРСОНАЛЬНОГО ВЫЗОВА

2.1. Анализ методов повышения чувствительности индуктивных датчиков магнитного поля

При использовании индуктивных датчиков в качестве преобра­зователей магнитного поля для приемников системы персонального индуктивного вызова (СПИВ), необходимо добиться от них наи­большей чувствительности. От этого параметра зависит не только дальность приема, но и число ложных вызовов или непринятие вы­зова. Повышения чувствительности индукционных датчиков можно добится разными методами, каждый из которых имеет свои преиму­щества и недостатки. Рассмотрим эти методы.

Предположим, что рамка со средним диаметром Dc, имеющая w витков, намотанных медным проводом диаметром d, находится в магнитном поле H=H sin( t+ ). Если направление вектора напря­женности поля составляет с осью рамки (перпендикуляр к плоскости витков) угол Q, то индуцируемая в катушке Э.Д.С. оп­ределяется выражением

e = - -- cos Q (5)

где Ф= SH sin( t+ ) - магнитный поток, пронизывающий витки рамки;

- магнитная проницаемость сердечника, равная для возду­ха 4* *10Е-7;

S - площадь поперечного сечения сердечника или витка воз­душной рамки.

Подставляя в (5) все величины в системе СИ, получаем

Э.Д.С. рамки

e = - SH cos( t+ ) (6)

Проанализируем это выражение. Для увеличения ЭДС рамки можно увеличивать различные величины в правой части уравнения (6). Рассмотрим их.

1). От угла Q сильно зависит величина ЭДС. Например, при Q=90 cosQ=0 и ЭДС равна нулю, а при Q=0 она максимальна. Зна­чит для улучшения работы СПИВ требуется, чтобы угол между век­тором напряжености поля и перпендикуляром к рамке постоянно стремился к нулю. Это условие выполняется при правильной уста­новке передающей и приемной антенн. Например, если обе рамки (приемную и передающую) установить параллельно земле и в одной плоскости, то независимо от положения абонента величина вели­чина угла Q будет равна нулю.

2). Как видно из (6) наведенная в рамке ЭДС прямо пропор­циональпа частоте изменения поля. Но бесконечно увеличивать частоту нельзя, так как она переходит в радиодиапазон со сле­дующими из этого недостатками (смотри часть 1). Обычно частота передачи ограничивается диапазоном 20 - 100 КГц.

3). Число витков w катушки один из наиболее действенных методов повышения чувствительности магнитного преобразователя. Казалось бы число витков можно увеличивать безгранично. Но и здесь стоят свои ограничения. Как известно, катушка кроме ин­дуктивности имеет собственную емкость и активное сопротивле­ние, которые ограничивают количество витков рамки. Так при оп­ределенной величине w собственная резонансная частота рамки становится меньше частоты изменения принимаемого поля и даль­нейшее увеличение количества витков приводит не к увеличению чувствительности, а наоборот, к ее падению. Также имеет значе­ние и активное сопротивление Rакт рамки от которого в большой степени зависит ее добротность. При увеличении Rакт доброт­ность рамки падает, полоса пропускания становится больше и как следствие понижается помехозащищенность системы.

4). Чувствительность, как видно из (6), прямо пропорцио­нальна площади рамки. Здесь основным ограничением является размер индивидуального приемника индуктивного вызова. Он дол­жен обладать карманным размером или хотя бы таким, чтобы его удобно было носить. Значит максимальная площадь рамки не долж­на превышать 300 см. Приемные рамки такого размера не обладают большой чувствительностью, следовательно необходимы другие ме­тоды ее повышения.

5). Использование сердечников позволяет значительно умень­шить размеры приемной антенны и одновременно увеличить ее чувствительнос

Подобные работы:

Актуально: