Симбиоз

или сожительство двух организмов,— одно из интереснейших и до сих пореще во многом загадочных явлений в био­логии, хотя изучениеэтого вопроса имеет уже почти столетнюю историю. Явление симбиоза впервые было обнаружено швейцарским уче­нымШвенденером в 1877 г. при изучении лишайников, которые, как выяснилось, пред­ставляют собой комплексные организмы, сос­тоящие из водоросли и гриба. Термин “симбиоз” появился в научной литературе позднее. Он был предложен в 1879 г. Де Пари.

В ряду симбиозов не последнее место зани­мают симбиозы с участием водорослей. Водо­росли способны вступать в симбиотические от­ношения не только друг с другом, но и с пред­ставителями различных систематических групп организмов, как животного, так и растительного царства (бактериями, одноклеточными и много­клеточными животными, грибами, мхами, па­поротниками, голосеменными и покрытосемен­ными растениями). Однако список таких водо­рослей весьма ограничен. Из обширнейшей группы сине-зеленых водорослей симбиоз с гри­бами(лишайниковый симбиоз) способны уста­навливать представители не более 5—7 родов, из которых чаще других встречаются носток (Nostoc), глеокапса(Gloeocapsa),сцитонема (Scytonema) и стигонема(Stigonema).

Анализ различных симбиозов вскрыл чрез­вычайно многообразный характер взаимоотно­шений между партнерами, разную степень их влияния друг на друга. Одним из простейших случаев является поселение одних организмов на поверхности других.


Как известно, растения, обитающие на дру­гих организмах, но питающиеся самостоятель­но, называют эп и ф и т а м и. К эпифитам от­носится и большая группа водорослей. Особенно часто водоросли эпифитируют на подводных растениях и водоплавающих животных, иногда покрывая их плотным налетом (рис. 46). При эпифитировании между участниками устанав­ливаются очень непрочные и кратковременные взаимосвязи, которые, однако, уже можно рас­сматривать как симбиотические. Поскольку эпифитирующая водоросль и хозяин оказывают друг на друга довольно слабое влияние, эпифитизм у водорослей принято считать наиболее примитивной формой симбиоза. Его относят даже к разряду “безразличных”. С подобным утверждением полностью согласиться трудно. Эпифиты действительно не причиняют прямого вреда организму, к которому прикрепляются, но косвенный ущерб при этом все же наносится. Хорошо известно, например, что обрастающие водорослями ножки водоплавающих клещиков, паучков и жучков становятся менее подвижными, а растения сильно затеняются расселив­шимися на них эпифитами и попадают в усло­вия, неблагоприятные для фотосинтеза. С яв­лением обрастания нередко приходится стал­киваться при разведении аквариумных расте­ний, которые могут сильно угнетаться обитаю­щими на них водорослями.

К сожалению, явление эпифитизма с биологи­ческой точки зрения изучено крайне слабо. Не исключено, что между эпифитом и его хо­зяином устанавливаются взаимоотношения го­раздо более сложные, чем

мы обычно себе пред­ставляем.

Помимо поверхностного прикрепления, во­доросли могут жить в тканях других организ­мов—как внеклеточно (в слизи, межклетниках, редко в оболочках мертвых клеток, так и внутриклеточно (в содержимом живых неповрежденных клеток. Такие во­доросли по способу обитания относят к группе растений эндофитов.

Внеклеточные и особенно внутриклеточные эндофиты из числа водорослей по сравнению с эпифитами образуют более сложные симбио­зы—эндосимбиозы. Для них характер­но наличие более или менее тесных, постоянных и прочных связей между партнерами. Эндо­симбиозы можно выявить только с помощью специальных цитологических исследований.

Наиболее многочисленную группу состав­ляют эндосимбиозы одноклеточных зеленых и желто-зеленых водорослей с одноклеточными животными. Эти водоросли но­сят названия соответственно зоохлорелл и зооксантелл. Из многоклеточных животных зеленые и желто-зеленые водоросли образуют эндосимбиозы с пресноводными губками, гидра­ми и др. . Сине-зеленые водоросли образуют с протозоа и некоторыми другими организмами своеобразную группу эндосимбиозов, получивших название синцианозов; возникающий при этом морфологический комп­лекс из двух организмов называют цианомом, а сине-зеленые водоросли в нем —цианеллами .

Сопоставление между собой различных эндосимбиозов позволяет наметить последовательные ступени усложнения морфологического и функ­ционального соподчинения партнеров. Так, не­которые эндосимбиозы существуют очень непро

Эпифитизм сине-зеленой водоросли Sokolovia neumaniae на ножках водного клещика Neumania triangulares:

должительное время, а затем распадаются, что является свидетельством их примитивности. Примером этого может служить слизистая ко­лониальная сине-зеленая водоросль воронихиния (Woronichinia naegeliana). Почти в 50% случаев в слизи, окружающей шаровидные ко­лонии этой водоросли, живут другие сине-зеленые водоросли (Lyngbya endophytica и Synechocystis endobiotica. Они интенсивно размножаются там, хотя имеют чрезвы­чайно бледную, едва заметную окраску. Это, вероятно, обусловлено появлением у них спо­собности утилизировать уже готовые органи­ческие соединения, которые в изобилии обра­зуются при распаде слизи.


Со временем интенсивное разрастание водо­рослей в слизи воронихинии приводит сначала к подавлению клеток, а затем к дезорганиза­ции и гибели всей колонии, а, следовательно, и симбиоза в целом.


Возникает вопрос: как проникают водоросли в ткани и клетки других организмов? У неко­торых организмов имеются для этого специаль­ные приспособления. Так, у мелкого, плаваю­щего в воде папоротника азоллы (Azolla) на нижней стороне листьев располагаются осо­бые полости с узкими выводными отверстиями, через которые выделяется наружу слизь. В этих полостях, независимо от того, в какой геогра­фической точке земного шара растет азолла (в Америке, Азии, Африке или Австралии), поселяются колонии строго определенного вида сине-зеленой водоросли — анабены (Anahaena azollae). Со временем полости закрываются и наступает полная изоляция попавших туда водорослей. Попытки заражения азоллы пред­ставителями других родов и даже видов сине-зеленых водорослей успеха не имели. Это сви­детельствует о том, что в процессе возникновения данного симбиоза между участниками уста­навливается довольно специфическая физиоло­гическая взаимозависимость. Этот вывод под­тверждается еще тем, что вырабатываемые азоллой азотистые соединения полностью усваи­ваются эндосимбиотнрующими здесь экземпля­рами анабены, вследствие чего у них отпадает свойственная свободноживущим представите­лям этой сине-зеленой водоросли функция фик­сации атмосферного азота. В свою очередь, анабена дополнительно снабжает ткани хозяи­на кислородом и другими продуктами своей жизнедеятельности.

Несмотря на существующую у этих симбион­тов специализацию физиологических процес­сов ни один из них не претерпевает сколько-нибудь существенных изменений в своей орга­низации.

Однако так обстоит дело далеко не у всех эндосимбиозов подобного типа. Эндосимбиотический образ жизни водорослей чаще всего приводит к частичной или полной редукции их клеточных оболочек. Например, у живущих в тканях морской губки аплизиллы (Aplysilla) особей сине-зеленой водоросли из рода афанокапса (Aphanocapsa) редукция клеточной оболочки выражается в уменьшении ее толщи­ны. За счет этого снижаются защитные свойст­ва оболочки, но повышается ее проницаемость. Последнее качество, несомненно, улучшает ус­ловия транспорта

Внеклеточный симбиоз

1. Поперечный разрез колонии сине-зеленой водоросли воронихии (крупные клетки по периметру), в слизи которой поселяются другие сине-зеленые водоросли синехоцистис(мелкие клетки и лингбия (удлиненные клетки)

2. Ткань ряски в межклетниках которой поселяется зеленая водоросль хлорохитрум.

3. Плазмодий желто-зеленой водоросли миксохлорис в мертвой водоносной клетке сфагнума.

Внутриклеточный симбиоз.

1. Амёба с клеточками зеленой водоросли зоохлореллы внутри, вверху отдельная клетка зоохлореллы при большом увеличении.

2 Продольный разрез через конец шупальца пресноводной зеленой гидры (Hydra viridis) С клетками зоохлореллы в клетках внутреннего слоя гидры.

3. Часть таллома зеленой водоросли геосифон (Geosiphon) разветвленные нити которой оканчиваются крупными пузырями в протоплазме которых живет сине-зеленая водоросль носток.

веществ между клетками губки и эндосимбиотирующей там водоросли.

Эндосимбиозы, относящиеся к разряду внеклеточных, образуют уже довольно ус­тойчивые функциональные и морфологические комплексы. Эта тенденция еще более усили­вается у внутриклеточных эндосимбиозов. Механизм проникновения во­дорослей внутрь клеток других организмов без их повреждения и нарушения нормальной жизнедеятельности остается пока нераскрытым. Отчасти предпосылки для возникновения внут­риклеточных эндосимбиозов могут быть зало­жены в сохранении у клеток некоторых орга­низмов голозойного типа питания. Из всех известных типов питания голозойный тип счи­тается одним из наиболее древних.

У организмов с голозойным типом питания захватываемая добыча, в числе которой оказы­ваются и водоросли, поступает непосредственно внутрь клетки и там переваривается. Однако отдельным захваченным особям, вероятно, в силу стечения благоприятных обстоятельств иногда удается не только сохраниться внутри клеток хозяина в неповрежденном виде, но и выработать приспособления к новым, необыч­ным условиям жизни и начать там размножать­ся. В результате между организмами устанав­ливаются отношения нового типа — симбиотические. Вероятно, именно так проникают эк­земпляры подвижной одноклеточной водоросли эвглены (Euglena gracilis) в эпителиальные клетки задней кишки личинок некоторых ви­дов стрекоз. Клетки эвглены остаются там зелеными на протяжении всего периода сов­местной жизни. Они, правда, теряют подвиж­ность, но при этом никогда не инцистируются. Очевидно, таким же способом особи однокле­точной зеленой водоросли картерии (Carteria) поселяются в эпидермальных клетках реснич­ного червя конволюта (Convoluta roscoffensis). Как выяснилось, клетки картерии под влия­нием симбиотического образа жизни хотя и претерпевают весьма существенные изменения (полностью редуцируется оболочка, и клетки оказываются окруженными только тонкой плаз­матической мембраной — плазмалеммой, ис­чезает стигма, упрощается внутренняя органи­зация жгутиков), но не прекращают фотосинтезировать. В свою очередь, червь приобретает способность питаться за счет продуктов жизне­деятельности водоросли, которые вырабаты­ваются в процессе фотосинтеза. В частности, он может жить в течение 4—5 недель, не полу­чая никакой пищи извне. Однако, когда про­цесс фотосинтеза прекращается (например, ес­ли опыт проводить в темноте), гибнут и водо­росль, и червь. Более того, личинки червя, лишенные клеток водоросли, не в состоянии вести самостоятельное существование. Искус­ственное их заражение водорослями не удается.

Внутриклеточные эндосимбиозы, несомнен­но, легче устанавливаются с теми организма­ми, клетки которых не имеют жесткой оболоч­ки на протяжении всего жизненного цикла или по крайней мере на одной из его стадий. Про­никновение симбионта внутрь клеток с жест­кими оболочками возможно только при усло­вии их частичного или полного разрушения. Последнее может наступить под действием спе­цифических энзимов, вырабатываемых организ­мом, вступающим в симбиотические отношения. Наблюдаемая в ряде случаев строгая специали­зация вступающих в симбиоз организмов, ве­роятно. объясняется именно этим обстоятель­ством. К сожалению, все попытки обнаружить хотя бы следы подобного рода энзимов пока успехом не увенчались.

Одни внутриклеточные эндосимбиозы. как это происходит у личинок стрекоз, периодиче­ски распадаются и вновь возобновляются: дру­гие — непрерывно поддерживаются из поколе­ния в поколение, так как в этих случаях между участниками устанавливаются прочные и про­должительные связи. Последняя группа эндосимбиозов. очевидно, могла возникнуть вслед­ствие утраты той фазы в жизненном цикле организма-хозяина, которая была благоприятна для проникновения симбионта в его клетки. С этого момента, по-видимому, и начинается тесная совместная жизнь двух организмов. В таких случаях переход к симбиотическому способу существования неизбежно сопровож­дается рядом адаптационных изменений у обо­их организмов. Иногда эти изменения морфо­логически незначительны и симбионт можно узнать (например, носток у геосифона, рис. 48,3), а иногда они настолько существенны, что симбиотирующие водоросли невозможно иденти­фицировать ни с одной из свободноживущих водорослей.

Так, в вакуолях одного из видов ресничной инфузории парамеции (Paramecium bursaria) неизменно присутствует зеленая одноклеточная водоросль. По морфологии и особенностям поведения ее можно лишь условно отнести к протококковой водоросли из рода хлорелла (Chlorella). Установлено, что клетки водоросли делятся независимо от деления парамеции. Каждая из вновь образующихся дочерних кле­ток (автоспор) водоросли немедленно заклю­чается в особую вакуолю и в таком виде в дальнейшем распределяется между дочерними особями инфузории.

В ряде случаев между симбионтами склады­ваются настолько тесные взаимозависимые от­ношения, что вне симбиоза они жить уже не могут. Очевидно, они необратимо утрачивают способность самостоятельно вырабатывать це­лый ряд веществ, которые в готовом виде по­ступают от симбиотирующих с ними водорос­лей. Реальность подобного предположения полностью подтвердилась в опытах с гидрой, которая, оказывается, в нужном количестве получает мальтозу из клетки симбиотирующей там зеленой водоросли, систематическую при­надлежность которой точно установить так и не удалось.

Иногда нераспадающиеся эндосимбиозы при­водят к образованию такого комплекса, симбио-тическая природа которого выявляется с боль­шим трудом. Так случилось с двумя водоросля­ми — цианофорой и глаукоцистисом.

В 1924 г. была описана новая для науки водоросль, названная цианофорой парадоксаль­ной (Cyanophora paradoxa, табл. 5, 7). Позднее детальное изучение этого организма показало, что цианофора представляет собой симбиоз бесцветной одноклеточной водоросли криптомонады (отдел Pyrrophyta) и поселяющейся в ней внутриклеточно сине-зеленой водоросли (цпанеллы) из рода хроококкус (Chroococcus, отдел Cyanophyta). Клетки последней под влия­нием симбиотического образа жизни настолько сильно видоизменяются, что теряют свой ти­пичный облик. Это выражается главным обра­зом в сильной редукции клеточной оболочки.

Она уменьшается не только по толщине, но и по числу входящих в ее состав слоев: вместо четырехслойной, обычно характерной для свободноживущих сине-зеленых водорослей, она становится двухслойной.

Еще большим преобразованиям подвергают­ся цианеллы, входящие в состав глаукоцистиса (Glaucocystis nostochinearum) — очень свое­образной одноклеточной водоросли, описанной в конце прошлого века. Ее систематическое положение долгое время не удавалось точно определить. На основании сине-зеленой окра­ски ее сначала отнесли к отделу Cyanophyta. В дальнейшем выявление целого ряда призна­ков, абсолютно несвойственных сине-зеленым водорослям (наличие морфологически оформ­ленного ядра, окрашенных телец, размножение посредством автоспор), позволили отнести этот организм к зеленым водорослям (отдел Chlorophyta). Только в 30-е годы текущего столетия было наконец установлено, что глаукоцистис представляет собой крайне своеобраз­ную форму эндосимбиоза обесцветившейся од­ноклеточной водоросли, близкой к роду ооцистис (Oocystis), и палочковидной сине-зеленой водоросли, которая претерпела здесь такие сильные преобразования, что установить точно ее систематическую принадлежность не пред­ставляется возможным. В равной степени это может быть любой модифицированный предста­витель из ряда родов одноклеточных палочковидных сине-зеленых водорослей. В симбиозах подобного рода глаукоцистис является пока единственным примером установления столь тесных взаимоотношений между партнерами. Сине-зеленые водоросли (цианеллы) располага­ются в клетках глаукоцистиса либо упорядоченно в виде двух групп, либо беспорядочно, случайно.

Цианеллы и свободноживущие сине-зеленые водоросли по своей тонкой организации ничем не отличаются друг от друга. Примечательно, что в цианеллах отсутствуют включения за­пасных питательных веществ, представленных различными метаболическими гранулами. По всей видимости, надобность в этом отпадает, поскольку цианеллы получают необходимые им вещества прямо из клетки хозяина. В то же время цианеллы поставляют в клетки хозяина некоторые продукты, которые вырабатываются ими в процессе фотосинтеза. Об этом свидетель­ствует присутствие в цитоплазме бесцветных клеток организма-хозяина крахмальных зерен. Явление это весьма необычное, поскольку у всех хлорофиллоносных зеленых растений един­ственным местом локализации крахмальных зерен является пластида (хлоропласт). В ус­ловиях симбиоза его участники достигают, вероятно, максимальной специализации, в силу которой симбиотирующие сине-зеленые водо­росли принимают на себя функции хлоропла­стов, но ими не становятся. В пользу послед­него свидетельствует существенная разница в организации цианелл и пластид. У клеток бесцветного симбионта глаукоцистиса утрачи­вается способность к самостоятельному обра­зованию крахмала, который образуется там, очевидно, при непосредственном участии цианелл.

Изучение с помощью электронного микро­скопа цианелл, входящих в состав глауко­цистиса, выявило у них сильную степень ре­дукции клеточной оболочки. Она сохраняется здесь в виде едва заметного контура, который можно обнаружить лишь при условии высокого качества фиксации и обработки материала. Более тщательное исследование цианелл по­казало, что их окружает лишь тонкая (100 ^ 10.4) мембрана, называемая плазмалеммой. Такая степень редукции клеточного покрова — уникальное явление среди вступающих в сим­биоз сине-зеленых водорослей.

Из приведенной характеристики цианелл вид­но, что они представляют собой не что иное, как клетки сине-зеленых водорослей, лишен­ных запасных веществ и клеточных оболочек.

Деление цианелл, как и клеток свободноживущих сине-зеленых водорослей, осуществляет­ся путем перетяжки пополам. Оно автономно и не приурочено к периоду размножения клет­ки-хозяина. В каждую его дочернюю клетку обычно попадает по несколько цианелл. Таким образом обеспечивается непрерывность сим­биоза. В отличие от органелл распределение цнанелл между дочерними клетками хозяина носит случайный характер, поэтому их число там сильно варьирует. Не вызывает никакого сомнения, что само деление и характер рас­хождения цианелл по дочерним клеткам регу­лируется не хозяином, что было бы вполне естественно, если бы они превратились в органеллы, а самими цианеллами, сохранившими все свойства клеток. Однако даже в условиях такого высокоразвитого симбиоза, примером которого является глаукоцистис, оба партнера все же сохраняют своп индивидуальные черты и автономность. Об этом свидетельствует их способность к раздельному существованию вне клеток хозяина. В специально подобранной питательной среде изолированные симбионты ведут себя как самостоятельные организмы. Они там не только успешно растут и развивают­ся, но II размножаются.

Среди симбиозов, образованных с участием водорослей, наибольший интерес представляет симбиоз водорослей с грибами, известный под названием лишайникового симбиоза.

ВЗАИМООТНОШЕНИЯ ГРИБА И ВОДОРОСЛИ В ТЕЛЕ ЛИШАЙНИКА

Вопрос взаимоотношения гриба и водоросли в слоевище лишайника занимал умы ученых еще в конце прошлого столетия, да и в паше время продолжает волновать лихенологов. Со дня открытия С. Швендснера прошло более 100 лет. За этот период появилось не менее де­сятка теорий, пытающихся объяснить отноше­ния между грибом и водорослью, однако среди них нет ни одной общепризнанной и оконча­тельно доказанной. С. Ш в е н д е не р, обна­ружив, что лишайник состоит из гриба и водо­росли, предположил, что гриб в слоевище па­разитирует на водоросли. Однако он ошибоч­но отвел грибу роль хозяина, а водоросли — раба.

Но уже в те времена некоторые ученые выд­винули мысль о двустороннем паразитизме компонентов лишайника — гриба на водоросли и водоросли на грибе. При этом было высказа­но предположение, что гриб и водоросль в слое­вище лишайника находятся в полном морфофизиологическом единстве и связаны между собой так же, как корни и листья цветковых растений. Такое сравнение, безусловно, было совсем необоснованным.

Наибольшее распространение среди ученых того времени получила теория мутуалистического симбиоза. Сторонники этой теории счита­ли, что в слоевище лишайника гриб и водоросль находятся во взаимовыгодном симбиозе: водо­росль “снабжает” гриб органическими вещест­вами, а гриб “защищает” водоросль от чрезмер­ного нагревания и освещения и “обеспечивает” ее водой и неорганическими солями. Однако в 1873 г. этой идеалистической теории был на­несен удар. Известный французский исследо­ватель Е.Борн е, изучая анатомическое строе­ние слоевища лишайников, обнаружил внутри водорослевых клеток грибные отростки — гаустории, всасывающие органы гриба. Это поз­воляло думать, что гриб использует содержи­мое клеток водорослей, т. е. ведет себя как па­разит.

За прошедшие со времен Борне 100 лет в слоевище лишайников было открыто и описано много различных форм абсорбционных, или всасывающих, гиф гриба. Эти гифы плотно прижимаются к клетке водоросли или прони­кают в нее и служат, как предполагают, для передачи веществ, которые образуют водоросли в результате своей жизнедеятельности, гриб­ному компоненту.

О том, что в слоевище лишайника происхо­дит обмен веществами между грибом и водо­рослью, ученые стали говорить сразу после от­крытия двойственной природы лишайников. Однако некоторые экспериментальные под­тверждения этим предположениям были полу­чены лишь за последние три десятилетия. При­менение новейших методов физиологических исследований с использованием меченых атомов углерода и азота, особых красящих веществ и некоторых других позволило установить, что гриб получает вещества, ассимилируемые водо­рослью, и ведет себя в слоевище лишайника как паразитический организм. Однако для существования как самого гриба, так и лишай­ника в целом необходимо, чтобы водоросль, окруженная со всех сторон грибными гифами, все-таки могла жить и более или менее нормаль­но развиваться. Если гриб начнет проявлять себя слишком активно, поражать все без исклю­чения водоросли и, использовав их содержимое, уничтожать их, это в конце концов может при­вести к гибели всех водорослей слоевища. Но тогда, уничтожив весь свой запас питания, по-

гибнет и сам гриб, а значит, перестанет существовать и лишайник.

Гриб должен использовать лишь часть водорослей, оставляя резерв — здоровые и нормальные водоросли, содержимым которых он мог бы питаться.

Учеными были замечены любопытные защит­ные реакции со стороны лишайниковых водо­рослей. Например, одновременно с проникновением гаустория в клетку водоросли эта клетка делилась. При этом плоскость деления, как правило, проходила как раз через участок, занятый гаусторием, а образовавшиеся в ре­зультате этого процесса дочерние клетки были свободны от гаусториев. Было замечено также, что обычно гриб поражает водоросли, уже достигшие определенной стадии зрелости. В мо­лодых растущих водорослях происходит энер­гичное отложение веществ в оболочке клетки и быстрое ее утолщение. Эта толстая оболочка клетки фикобионта препятствует проникнове­нию абсорбционных органов гриба. Однако большей частью защитная реакция водорослей против активности грибного компонента очень слаба.

Способность водорослей нормально разви­ваться и даже размножаться в слоевище ли­шайника сохраняется скорее благодаря уме­ренности паразитизма самого гриба.

Ученые отмечают, что степень паразитизма гриба на водоросли различна не только у раз­ных видов лишайников, но даже в одном и том же слоевище. Резкий паразитизм обнаружен лишь у примитивных лишайников. Гаустории, проникающие глубоко внутрь протопласта во­доросли, пока что были найдены лишь у наибо­лее просто организованных форм, в слоевище которых еще нельзя различить оформленных дифференцированных слоев. В слоевищах более высокоорганизованных лишайников часть кле­ток водорослей поражена грибными гифами, а остальные продолжают нормально жить и раз­виваться. Обычно у высокоорганизованных форм лишайников паразитизм гриба на водо­росли носит весьма умеренный характер: преж­де чем гриб убьет пораженные им клетки, успе­вает вырасти одно или несколько поколений водорослей.

Отношения между мико- и фикобионтом в слоевище лишайника не сводятся только к па­разитизму гриба на водоросли. Ученые пред­полагают, что эти отношения гораздо сложнее. Еще в начале нашего века крупнейший русский лихенолог А. А. Е ленки н, изучая анатоми­ческое строение лишайников, обнаружил в их слоевище некральные зоны водорослей — скоп­ления отмерших, потерявших зеленую окраску клеток, расположенные несколько ниже зоны живых водорослей. К этим бесцветным мертвымклеткам водорослей тоже тянулись грибные гифы. Это привело А. А. Еленкина к мысли, что гриб в слоевище лишайника вначале прояв­ляет себя как паразитический организм, пора­жая живые клетки водоросли и используя их содержимое. Затем, убив водоросль, гриб пере­ходит к сапрофитному способу питания, погло­щая и ее мертвые остатки. Таким образом, гриб в слоевище лишайника ведет себя и как паразит, и как сапрофит. И отношения между грибом и водорослью в слоевище лишайника А. А. Еленкин назвал эндопаразитосапрофитизмом.

Интересную мысль о взаимоотношении ком­понентов в слоевище лишайника высказал в 60-х годах нашего столетия крупнейший совет­ский лихенолог А. Н. О к сне р. Он пришел к выводу, что водоросль в слоевище лишайника, полностью изолированная от внешней среды грибной тканью, обязательно должна забирать у грибного компонента все необходимые для своего существования вещества, за исключе­нием тех органических соединений, которые она сама вырабатывает на свету в процессе асси­миляции углекислоты. К этим жизненно необ­ходимым для водоросли веществам относится прежде всего вода, а также минеральные соли, азотистые и некоторые другие неорганические соединения. Следовательно, и водоросль в слое­вище лишайника проявляет себя как паразит. Причем это вовсе не противоречит общему характеру ее питания. Как показало изучение лишайниковых водорослей в чистых культурах, многие из них, будучи большей частью автотрофными организмами, способны и к миксотрофному питанию.

Таким образом, ученые считают, что водо­рослевый и грибной компоненты лишайника находятся в очень сложных взаимоотношениях. Микобионт ведет себя как паразит и сапро­фит на теле водоросли, а фикобионт, в свою оче­редь, паразитирует на лишайниковом грибе. При этом паразитизм фикобионта всегда носит более умеренный характер, чем паразитизм гриба.


Однако все высказанные по этому поводу точки зрения до сих пор 'остаются лишь догад­ками и большей частью не подтверждены экспе­риментально: лишайники оказались очень труд­ным объектом для физиологических исследова­ний. Ученые пока не научились выращивать и поддерживать в живом состоянии слоевище лишайников в искусственных условиях. Тот контакт между грибом и водорослью, который с такой легкостью достигается в природе (доста­точно вспомнить многообразие лишайников!), никак не удается воспроизвести в лаборатор­ных условиях. Наоборот, при переносе лишай­ников в лабораторию этот контакт легко нарушается и растение просто погибает. Время от времени появляются сообщения об удачных опытах выращивания лишайника в условиях лаборатории, но пока эти сообщения единичны и не всегда достоверны.

Одной из причин неудач подобных попыток можно считать чрезвычайно медленный рост лишайников. Лишайники — многолетние расте­ния. Обычно возраст взрослых слоевищ, кото­рые можно увидеть где-нибудь в лесу на стволе деревьев или на почве, составляет не менее 20—50 лет. В северных тундрах возраст неко­торых кустистых лишайников рода кладония достигает 300 лет. Слоевище лишайников, име­ющих вид корочки, в год дает прирост всего 0,2—0,3 мм.

Кустистые и листоватые лишайники растут несколько быстрее — в год их слоевище уве­личивается на 2—3 мм. Поэтому, чтобы вырас­тить взрослый лишайник в лаборатории, тре­буется не менее 20 лет, а может быть, и вся жизнь исследователя. Трудно проводить столь долговременный эксперимент!

Вот почему физиологические особенности ли­шайников, в том числе взаимоотношения ком­понентов, как правило, изучают на культурах изолированных мико- и фикобионтов. Этот метод очень перспективен, так как позволяет ставить длительные и воспроизводимые опыты. Но, к сожалению, данные, полученные этим мето­дом, не могут полностью отразить те процессы, которые происходят в целом слоевище лишай­ника.

И тем более мы не вправе считать, что в природе, в естественных условиях, в слоеви­щах лишайника эти процессы протекают точно так же, как в культурах изолированных сим­бионтов. Вот почему все теории, пытающиеся объяснить взаимоотношения компонентов ли­шайников, остаются пока лишь догадками.

Более успешным оказалось изучение форм контакта между гифами гриба и клетками водо­рослей в слоевищах лишайников. Как показа­ли исследования с применением электронной микроскопии, в слоевище лишайников можно встретить по крайней мере пять типов контак­та между грибными гифами и водорослевыми клетками (рис. 289).

Чаще всего отдельная клетка водоросли и клетка грибной гифы находятся в непосредст­венном контакте друг с другом. В таком случае гриб образует специальные абсорбционные, вса­сывающие органы, которые проникают внутрь водорослевой клетки или плотно прижимаются к ее оболочке.

В настоящее время среди абсорбционных ор­ганов гриба в слоевище лишайников различа­ют несколько типов: гаустории, импрессории и аппрессории.

Формы контакта между гифами гриба и клетками водорослей в слоевище лищайников.

Гаустории— это боковые выросты гиф гриба, которые прорывают оболочку клетки водоросли и проникают в ее протопласт (рис. 289, 2). Обычно в клетке водоросли развивает­ся одни гаусторий, но иногда их может быть и два. В слоевище лишайника гаустории встре­чаются в большом количестве и существуют продолжительное время. Было замечено, что в оболочках молодых гаусториев нет отложе­ний целлюлозы, которая могла бы затруднять обмен между клеткой водоросли и гифой гриба. Старые гаустории почти всегда одеты доволь­но толстым слоем целлюлозы. Различают интрацеллюлярные (внутриклеточные) и интрамембранные (внутриоболочковые) гаустории.

Интрацеллюлярные гаустории полностью прорывают оболочку клетки водо­росли и проникают глубоко внутрь ее прото­пласта (рис.289, 3). Интрацеллюлярные гау­стории образуются в случае резкого парази­тизма гриба на водоросли. Это особенно характерно для лишайников с примитивным строе­нием слоевища.

У более высокоорганизованных лишайни­ков образуются только интрамембран­ные гаустории. Они прорывают оболоч­ку клетки водоросли и достигают ее протопла­ста, но не углубляются в него, а остаются в оболочке водорослевой клетки (рис. 289, 5). Наибольшее количество интрамембранных гау­сториев образуется в слоевище лишайников весной, в начале вегетационного периода. С наступлением осени они далеко отступают от протопласта водоросли.

Другой тип всасывающих органов гриба — импрессории— тоже боковые выросты грибных гиф, но, в отличие от гаусториев, они не прорывают оболочку клетки водоросли, а вдавливают ее внутрь (рис. 289, 6, 7). Импресcopии отмечены у очень многих лишайников, например у широко распространенной пельтигеры (Peltigera).

Интересно, что в слоевищах, произрастающих во влажных местообитаниях, импрессории поч­ти не развиваются, у тех же видов в сухих местообитаниях они образуются в большом ко­личестве. При длительной засухе число импрессориев также увеличивается. Предполагают, что в засушливые периоды и в сухих местообита­ниях гриб, чтобы удовлетворить потребности в питании, увеличивает свою всасывающую по­верхность за счет увеличения количества и размеров импрессориев.

В отличие от гаусториев и импрессориев, образованных боковыми отростками гифы, аппрессории образуются вершиной грибной гифы. Такая вершина гифы плотно прижимает­ся снаружи к оболочке клетки водоросли, никогда не проникая ни в ее протопласт, ни в ее внутренний слой (рис. 289, 8).

Наличие в слоевищах многих лишайников абсорбционных органов гриба хорошо доказы­вает паразитическую сущность отношениймикобионта к фикобионту. Но во многих случаях у лишайникового гриба все же не удается обна­ружить особых абсорбционных органов, чаще всего у лишайников, фикобионт которых имеет тонкие оболочки клеток. В таких случаях уже внешний контакт гифы гриба и клетки водо­росли может обеспечить обмен веществами между ними. Так, например, обстоит дело у многих видов рода кладония. Фикобионтом кладонии является одноклеточная зеленая водоросль требуксия. У этих лишайников отдельные клетки водорослей окружены со всех сторон тонкими тонкостенными гифами, иногда поделенными на мелкие клеточки. Эти гифы, которые носят название обволакивающих или контактных, не проникают в протопласт кле­ток водоросли и не внедряются в их оболочку, а просто окружают клетки со всех сторон, так что каждая из них становится похожей на малень­кий шар, охваченный пальцами рук (рис. 289,7). Иногда гифы полностью оплетают водоросли в виде сплошного покрова и при этом, сливаясь своими стенками, даже образуют клеточную псевдопаренхимную ткань. На первый взгляд кажется, что водоросли не особенно страдают от плотного окружения гифами гриба: они долго сохраняют свою зеленую окраску и продолжа­ют интенсивно делиться.

Но в более старых участках слоевища мож­но найти немало отмерших обесцвеченных клеток — гриб рано или поздно все-таки уби­вает водоросли. Такой же тип контакта между гифами гриба и клетками водор

Подобные работы:

Актуально: