* Алгебры и их применение
Пусть Н – гильбертово пространство, L(Н) – множество непрерывных линейных операторов в Н. Рассмотрим подмножество А в L(Н), сохраняющееся при сложении, умножении, умножении на скаляры и сопряжении. Тогда А – операторная *-алгебра. Если дана абстрактная *-алгебра А, то одна из основных задач теории линейных представлений (*-гомоморфизмов А в L(Н)) – перечислить все ее неприводимые представления (с точностью до эквивалентности).
Теория унитарных представлений групп восходит к XIX веку и связана с именами Г.Фробениуса, И.Шура, В.Бернсайда, Ф.Э. Молина и др. В связи с предложениями к квантовой физике теория унитарных представлений топологических групп, групп Ли, С*-алгебр была разработана И.М.Гельфандом, М.А. Наймарком, И.Сигалом, Ж.Диксмье, А.А. Кирилловым и др. в 60-70-х годах XX века. В дальнейшем интенсивно развивается теория представлений *-алгебр, заданных образующими и соотношениями.
Дипломная работа посвящена развитию теории представлений (конечномерных и бесконечномерных) *-алгебр, порожденных двумя проекторами.
Глава I в краткой форме содержит необходимые для дальнейшего сведения из теории представлений и функционального анализа. В §1 дано определение *-алгебры и приведены простейшие свойства этих алгебр. В §2 излагаются основные свойства представлений, вводятся следующие понятия: неприводимость, эквивалентность, прямая сумма, интегрирование и дезинтегрирование представлений. В §3 определяются тензорные произведения пространств, тензорные произведения операторов и др. (см. (2), (3), (4), (8), (9))
В Главе II изучаются представления *-алгебры P2
P2 = С < p1, p2 | p12 = p1* = p1, p22 = p2* = p2 >,
порожденной двумя самосопряженными идемпотентами, то есть проекторами (см., например, (12)). Найдены все неприводимые *-представления *-алгебры P2, с точностью до эквивалентности., доказаны соответствующие спектральные теоремы.
В §1 рассматриваются только конечномерные *-представления π в унитарном пространстве Н. Описаны все неприводимые и неэквивалентные *-представления *-алгебры P2 . Неприводимые *-представления P2 одномерны и двумерны:
4 одномерных: π0,0(p1) = 0, π0,0(p2) = 0; π0,1(p1) = 0, π0,1(p2) = 1;
π1,0(p1) = 1, π1,0(p2) = 0; π1,1(p1) = 1, π1,1(p2) = 1.
И двумерные: , τ (0, 1).
Доказана спектральная теорема о разложении пространства Н в ортогональную сумму инвариантных относительно π подпространств Н, а также получено разложение π на неприводимые *-представления. Результаты §1 относятся к математическому фольклору.
В §2 получены основные результаты работы. Для пары проекторов в сепарабельном гильбертовом пространстве Н приведено описание всех неприводимых представлений, доказана спектральная теорема.
В Главе III спектральная теорема для пары проекторов Р1, Р2, применяется к изучению сумм Р1+Р2, аР1+bР2 (0 < a < b). Получены необходимое и достаточное условие на самосопряженный оператор А для того чтобы А = Р1+Р2 или А = аР1+bР2, 0 < a < b, (этот частный случай задачи Г.Вейля (1912 г.) о спектре суммы пары самосопряженных операторов).
Глава I. Основные понятия и определения
§ 1. - алгебры
Определение - алгебры.
Определение 1.1. Совокупность А элементов x, y, … называется алгеб- рой, если:
А есть линейное пространство;
в А введена операция умножения (вообще некоммутативного), удовлет- воряющая следующим условиям:
α (x y) = (α x) y,
x (α y) = α (x y),
(x y) z = x (y z),
(x + y) = xz +xy,
x (y + z) = xy + xz для любых x, y, z А и любых чисел α.
Два элемента x, y алгебры А называются перестановочными, если xy = yx. Алгебра А называется коммутативной, если все ее элементы попарно пере- становочны.
Определение 1.2. Пусть А – алгебра над полем С комплексных чисел. Инволюцией в А называется такое отображение x → x* алгебры А в А, что
(x*)* = x;
(x + y)* = x* + y*;
(α x)* = x*;
(x y)* = y*x* для любых x, y С.
Алгебра над С, снабженная инволюцией, называется инволютивной алгеброй или *- алгеброй. Элемент х* называют сопряженным к х. Подмножество А, сохраняющееся при инволюции, называется само- сопряженным.
Из свойства (i) следует, что инволюция в А необходимо является биекцией А на А.
1.2. Примеры
На А = С отображение z → (комплексное число, сопряженное к z) есть инволюция, превращающая С в коммутативную *- алгебру.
Пусть Т – локально компактное пространство, А = С(Т) – алгебра непре- рывных комплексных функций на Т, стремящихся к нулю на бесконечности (то есть для любого ε > 0 множество {tT: |f (t)| ε} компактно, f (t) А. Снабжая А отображением f→ получаем коммутативную *- алгебру. Если Т сводится к одной точке, то возвращаемся к примеру 1).
Пусть Н – гильбертово пространство. А = L(H) – алгебра ограниченных линейных операторов в Н. Зададим инволюцию как переход к сопряженному оператору. Тогда А - *- алгебра.
Обозначим через К(Н) совокупность всех компактных операторов в гильбертовом пространстве Н; операции сложения, умножения на число и умножения определим как соответствующие действия с операторами. Тогда К(Н) будет *- алгеброй, если ввести инволюцию А→А* (АК(Н)). Алгебра К(Н) в случае бесконечного Н есть алгебра без единицы. Действительно, если единичный оператор I принадлежит К(Н), то он переводит открытый единичный шар S H в себя. Значит I не может быть компактным оператором.
Обозначим через W совокупность всех абсолютно сходящихся рядов .
Алгебра W есть *- алгебра, если положить . ()
1.3. Алгебры с единицей
Определение 1.3. Алгебра А называется алгеброй с единицей, если А содержит элемент е, удовлетворяющий условию
ех = хе = х для всех хА (1.1.)
Элемент е называют единицей алгебры А.
Теорема 1.1. Алгебра А не может иметь больше одной единицы.
Доказательство. Действительно, если е΄ - также единица в А, то
е΄х = хе΄ = х, для всех хА (1.2.)
Полагая в (1.1.) х = е΄, а в (1.2.) х = е, получим:
ее΄ = е΄е = е΄ и е΄е = ее΄ =е, следовательно е΄ = е.
Теорема 1.2. Всякую алгебру А без единицы можно рассматривать как подалгебру некоторой алгебры А΄ с единицей.
Доказательство. Искомая алгебра должна содержать все суммы х΄=αе + х, хА; с другой стороны, совокупность всех таких сумм образует алгебру А΄, в которой основные операции определяются формулами:
β(αе + х) = βαе + βх, (α1е + х1) + (α2е + х2) = (α1 + α2)е + (х1 + х2),
(α1 е + х1)(α2 е+ х2 )=α1 α2 е +α1 х2 +α2 х1 + х1 х2 (1.3.)
Каждый элемент х΄ из А΄ представляется единственным образом в виде
х΄ = αе + х, хА, так как по условию А не содержит единицы. Поэтому А΄ можно реализовать как совокупность всех формальных сумм х΄ = αе + х, хА, в которой основные операции определяются формулами (1.3.); сама алгебра А получится при α = 0.
Алгебру А΄ можно также реализовать как совокупность всех пар (α, х), хА, в которой основные операции определяются по формулам:
β (α, х) = (βα, βх), (α1, х1) + (α2, х2) = (α1 + α2, х1 + х2),
(α1, х1)(α2, х2) = (α1α2, α1х2 + α2 х1 + х1х2), (1.4.)
аналогично тому, как определяются комплексные числа. Саму алгебру А можно тогда рассматривать как совокупность всех пар (0, х), хА и не делать различия между х и (0, х). Полагая е = (0, х), мы получим:
(α, х) = α(1, 0) + (0, х) = αе + х,
так что вторая реализация алгебры А΄ равносильна первой.
Переход от А к А΄ называется присоединением единицы.
Определение 1.4. Элемент y называется левым обратным элемента х, если xy = e. Элемент z называется правым обратным элемента х, если xz = e.
Если элемент х имеет и левый, и правый обратные, то все левые и правые обратные элемента х совпадают. Действительно, умножая обе части равенства yx = e справа на z, получим
z = (yx)z = y(xz) = ye,
В этом случае говорят, что существует обратный х-1 элемента х.
1.4. Простейшие свойства - алгебр
Определение 1.5. Элемент х *-алгебры А называется эрмитовым или самосопряженным, если х* = х, нормальным, если хх* = х*х. Идемпотентный эрмитов элемент называется проектором. Элемент алгебры называется идемпотентным, если все его (натуральные) степени совпадают.
Каждый эрмитов элемент нормален. Множество эрмитовых элементов есть вещественное векторное подпространство А. Если х и y эрмитовы, то (xy)*= y*x* = yx; следовательно, xy эрмитов, если x и y перестановочны. Для каждого хА элементы хх* и х*х эрмитовы. Но, вообще говоря, эрмитов элемент не всегда представим в этом виде, как показывает пример 1 из пункта 1.2. Действительно, для любого zC , но если z действительно отрицательное число, то его нельзя представить в виде .
Теорема 1.3. Всякий элемент х *-алгебры А можно представить, и притом единственным образом, в виде х = х1 +iх2, где х1, х2 – эрмитовы элементы.
Доказательство. Если такое представление имеет место, то х* = х1 +iх2, следовательно:
, (1.5.)
Таким образом, это представление единственно. Обратно, элементы х1, х2, определенные равенством (1.5.), эрмитовы и х = х1 +iх2.
Эти элементы х1, х2 называются эрмитовыми компонентами элемента х.
Заметим, что хх* = х12 + х22 + i(х2х1 – х1х2),
хх* = х12 + х22 - i(х2х1 – х1х2)
так что х нормален тогда и только тогда, когда х1 и х2 перестановочны.
Так как е*е = е* есть эрмитов элемент, то е* = е , то есть единица эрмитов элемент.
Если А - *-алгебра без единицы, а А΄ - алгебра, полученная из А присоединением единицы, то, положив при хА, мы определим инволюцию в А΄, удовлетворяющую всем требованиям определения 2. Так что А΄ станет *-алгеброй. Говорят, что А΄ есть *-алгебра, полученная из А присоединением единицы.
Теорема 1.4. Если х-1 существует, то (х*)-1 также существует и
(х*)-1 = (х-1)*
Доказательство. Применяя операцию * к обеим частям соотношения
х-1х = хх-1 = е,
получим х*(х-1)*= (х*)-1х*=е.
Но это означает, что (х-1)* есть обратный к х*.
Подалгебра А1 алгебры А называется *-подалгеброй, если из хА1 следует, что х*А1 .
Непустое пересечение *-подалгебр есть также *-подалгебра. В частности, пересечение всех *-поалгебр, содержащих данное множество S А, есть минимальная *-подалгебра, содержащая S.
Коммутативная *-алгебра называется максимальной, если она не содержится ни в какой другой коммутативной *-подалгебре.
Теорема 1.5. Если В – максимальная коммутативная *-подалгебра, содержащая нормальный элемент х , и если х-1 существует, то х-1В.
Доказательство. Так как х т х* перестановочны со всеми элементами из В, то этим же свойством обладают х-1 и (х*)-1 = (х-1)*. В силу максимальности В отсюда следует, что х-1В.
Определение 1.6. Элемент хА - *-алгебры называется унитарным, если хх* = х*х = е, иначе говоря, если х обратим и х = (х*)-1.
В примере 1 п.1.2. унитарные элементы – комплексные числа с модулем, равным 1.
Унитарные элементы А образуют группу по умножению – унитарную группу А. Действительно, если x и y – унитарные элементы *-алгебры А, то
((хy)*)-1 = (у*х*)-1 =(х*)-1 (y*)-1 = xy,
поэтому xy унитарен, и так как ((х-1)*)-1= ((х*)-1)-1 = х-1, то х-1 унитарен.
1.5. Гомоморфизм и изоморфизм алгебр
Определение 1.7. Пусть А и В – две *-алгебры. Назовем гомоморфизмом (*-гомоморфизмом) А в В такое отображение f множества А в В, что
f (x + y) = f (x) + f (y),
f (αx) = α f (x),
f (xy) = f (x) f (y),
f (x*) = f (x)*
для любых х,yА, αС. Если отображение f биективно, то f называют изоморфизмом (*-изоморфизмом).
Определение 1.8. Совокупность I элементов алгебры А называется левым идеалом, если:
I ≠ A;
Из х, yI следует x + y I;
Из хI, а αА следует α хI.
Если I = А, то I называют несобственным идеалом.
Аналогично определяется и правый идеал. Идеал, являющийся одновременно и левым, и правым, называется двусторонним.
Всякий идеал автоматически оказывается алгеброй.
Пусть I – двусторонний идеал в алгебре А. Два элемента х, y из А назовем эквивалентными относительно идеала I, если х-yI. Тогда вся алгебра А разбивается на классы эквивалентных между собой элементов. Обозначим через А совокупность всех этих классов. Введем в А1 операции сложения, умножения на число и умножения, производя эти действия над представителями классов. Так как I – двусторонний идеал, то результат операций не зависит от выбора этих представителей.
Следовательно, А1 становится алгеброй. Эта алгебра называется фактор-алгеброй алгебры А по идеалу I и обозначается A/I.
*-гомоморфизм алгебр описывается при помощи так называемых самосопряженных двусторонних идеалов.
Определение 1.9. Идеал I (левый, правый или двусторонний) называется самосопряженным, если из хI следует х*I.
Самосопряженный идеал автоматически является двусторонним. Действительно, отображение х → х* переводит левый идеал в правый и правый идеал в левый; если поэтому отображение х → х* переводит I в I, то I есть одновременно и левый и правый идеал.
В фактор-алгебре A/I по самосопряженному двустороннему идеалу I можно определить инволюцию следующим образом. Если х-yI, то х*-y*I. Поэтому при переходе от х к х* каждый класс вычетов х по идеалу I переходит в некоторый другой класс вычетов по I. Все условия из определения 1.2. выполнены; следовательно, A/I есть *-алгебра.
Если х → х΄ есть *-гомоморфизм А на А΄, то полный прообраз I нуля (то есть ядро данного гомоморфизма) есть самосопряженный двусторонний идеал в А. Фактор-алгебра A/I *-изоморфна *-алгебре А΄.
Обратно, отображение х → (х) каждого элемента хА в содержащий его класс вычетов по I есть *-гомоморфизм алгебра А на A/I.
§ 2. Представления
2.1. Определения и простейшие свойства представлений.
Определение 2.1. Пусть А - *-алгебра, Н – гильбертово пространство. Представлением А в Н называется *-гомоморфизм *-алгебры А в *-алгебру ограниченных линейных операторов L(H).
Иначе говоря, представление *-алгебры А в Н есть такое отображение из А в L(H), что
π (x+y) = π (x) + π (y), π (α x) = α π(x),
π (xy) = π (x) π (y), π (x*) = π (x)*
для любых х, y А и α С.
Размерность гильбертова пространства Н называется размеренностью π и обозначается dimπ. Пространство Н называется пространством представления π.
Определение 2.2. Два представления π1 и π2 инволютивной алгебры А в Н1 и Н2 соответственно, эквивалентны (или унитарно эквивалентны), если существует унитарный оператор U, действующий из гильбертова пространства Н1 в гильбертово пространство Н2, переводящий π1(х) в π2(х) для любого хА, то есть
U π1(х) = π2(х) U для всех х А.
Определение 2.3. Представление π называется циклическим, если в пространстве Н существует вектор f такой, что множество всех векторов π (х)f (для всех хА) плотно в Н. Вектор f называют циклическим (или тотализирующим) для представления π.
Определение 2.4. Подпространство Н1Н называется инвариантным, относительно представления π, если π (А)Н1Н1.
Если Н1 инвариантное подпространство, то все операторы π(х) (хА) можно рассматривать как операторы Н1. Сужения π(х) на Н1 определяют подпредставления π1 *-алгебры А в Н1.
Теорема 2.1. Если Н1 инвариантное подпространство Н, то его ортогональное дополнение также инвариантно.
Доказательство. Пусть f ортогонален к Н1, то есть (f, g) = 0 для всех gН1. Тогда для любого хА (π(х)f, g) = (f, π(х)*g) = (f, π(х*)g) = 0, так как π(х*)gН1. Следовательно, вектор π(х)f также ортогонален к Н1.
Обозначим через Р1 оператор проектирования в Н на подпространство Н1Н1.
Теорема 2.2. Н1 – инвариантное подпространство тогда и только тогда, когда все операторы представления перестановочны с оператором проектирования Р1 на Н1.
Доказательство. Пусть Н1 – инвариантное подпространство и fН1, но также π(х)f Н1. Отсюда для любого вектора fН
π(х)Р1f Н1
следовательно, Р1π(х)Р1f = π(х)Р1f ,
то есть Р1π(х)Р1 = π(х)Р1.
Применяя операцию инволюции к обеим частям этого равенства и подставляя затем х* вместо х, получаем, что также
Р1π(х)Р1 = Р1π(х).
Следовательно, Р1π(х) = π(х)Р1; операторы Р1 и π(х) коммутируют.
Обратно, если эти операторы перестановочны, то для fН1
Р1π(х)f = π(х)Р1f = π(х)f ;
Следовательно, также π(х)f Н1. Это означает, что Н1 – инвариантное подпространство.
Теорема 2.3. Замкнутая линейная оболочка К инвариантных подпрост- ранств есть также инвариантное подпространство.
Доказательство. Всякий элемент g из К есть предел конечных сумм вида
h = f1 + … + fn, где f1, …, fn – векторы исходных подпространств. С другой стороны, π(х)h = π(х)f1 +…+ π(х)fn есть сумма того же вида и имеет своим пределом π(х)g.
2.2. Прямая сумма представлений. Пусть I – произвольное множество. Пусть (πi)iI - семейство представлений *-алгебры А в гильбертовом пространстве Нi (iI). Пусть
|| πi (х) || ≤ сх
где сх – положительная константа, не зависящая от i.
Обозначим через Н прямую сумму пространств Нi, то есть Н = Нi. В силу (2.1.) можно образовать непрерывный линейный оператор π(х) в Н, который индуцирует πi (х) в каждом Нi. Тогда отображение х → π(х) есть представление А в Н, называемое прямой суммой представлений πi и обозначаемое πi или π1…..πn в случае конечного семейства представлений (π1…..πn). Если (πi)iI – семейство представлений *-алгебры А, совпадающих с представлением π, и если CardI = c, то представления πi обозначается через сπ. Всякое представление, эквивалентное представлению этого типа, называется кратным π.
Для доказательства следующего понадобится лемма Цорна. Напомним ее.
Лемма Цорна. Если в частично упорядоченном подмножестве Х всякое линейно упорядоченное подмножество имеет в Х верхнюю грань, то Х содержит максимальный элемент.
Теорема 2.4. Всякое представление есть прямая сумма цикличных представлений.
Доказательство. Пусть f0 ≠ 0 – какой-либо вектор из Н. Рассмотрим совокупность всех векторов π(х)f0, где х пробегает всю *-алгебру А. Замыкание этой совокупности обозначим через Н1. Тогда Н1 – инвариантное подпространство, в котором f0 есть циклический вектор. Другими словами, Н1 есть циклическое подпространство представления π.
Если Н1 = H, то предложение доказано; в противном случае H-Н1 есть отличное от {0} инвариантное подпространство. Применяя к нему тот же прием, мы выделим циклическое подпространство Н2 ортогональное Н1.
Обозначим через М совокупность всех систем {Нα}, состоящих из взаимно ортогональных циклических подпространств представления; одной из таких систем является построенная выше система {Н1, Н2}. Упорядоченная при помощи соотношения включения совокупность М образует частично упорядоченное множество, удовлетворяющее условиям леммы Цорна; именно, верхней гранью линейно упорядоченного множества систем {Нα}М будет объединение этих систем. Поэтому в М существует максимальная система {Нα}. Но тогда Н=Нα; в противном случае в инвариантном подпространстве Н-(Нα) существовало бы отличное от {0} циклическое подпространство Н0 и мы получили бы систему {Нα}Н0М, содержащую максимальную систему {Нα}, что невозможно.
2.3. Неприводимые представления.
Определение 2.5. Представление называется неприводимым, если в пространстве Н не существует инвариантного подпространства, отличного от {0} и всего Н.
Согласно теореме 2.2. это означает, что всякий оператор проектирования, перестановочный со всеми операторами представления, равен 0 или 1.
Всякое представление в одномерном пространстве неприводимо.
Теорема 2.5. Представление π в пространстве Н неприводимо тогда и только тогда, когда всякий отличный от нуля вектор пространства Н есть циклический вектор этого представления.
Доказательство. Пусть представление π неприводимо. При fН, f ≠ 0, подпространство, натянутое на векторы π(х)f , хА, есть инвариантное подпространство; в силу неприводимости представления оно совпадает с {0} или Н. Но первый случай невозможен, ибо тогда одномерное пространство
{α f | α C} инвариантно и потому совпадает с Н, то есть π(х)=0 в Н. Во втором же случае f есть циклический вектор.
Обратно, если представление π приводимо и К – отличное от {0} и Н инвариантное подпространство в Н, то никакой вектор f из К не будет циклическим для представления π в Н.
Теорема 2.6. (И.Шур) Представление π неприводимо тогда и только тогда, когда коммутант π (А) в L(H) сводится к скалярам (то есть операторам кратным единичному).
Доказательство. Пусть представление π неприводимо и пусть ограни- ченный оператор В перестановочен со всеми операторами π(х). Предположим сначала, что В – эрмитов оператор; обозначим через E(λ) спектральные проекторы оператора В. Тогда при любом λ оператор E(λ) перестановочен со всеми операторами π(х) ; в виду неприводимости представления E(λ) =0 или E(λ) =1, так как (E(λ) f, f) не убывает при возрастании λ, то отсюда следует, что существует λ0 такое, что E(λ) =0 при λ<λ0 и E(λ) =1 при λ>λ0 . Отсюда
В=λ dE(λ) = λ0 1.
Пусть теперь В – произвольный ограниченный оператор, переста- новочный со всеми операторами π(х). Тогда В* также перестановочен со всеми операторами π(х). Действительно,
В*π(х) = (π(х*)В)* = (Вπ(х*))* = π(х)В*
Поэтому эрмитовы операторы В1=, В2= также перестановочны со всеми операторами π(х) и, следовательно, кратны единице. Но тогда и оператор В = В1+iВ2 кратен единице, то есть В – скаляр.
Обратно, пусть всякий ограниченный оператор, перестановочный со всеми операторами π(х), кратен единице. Тогда, в частности, всякий оператор проектирования, перестановочный со всеми операторами π(х) кратен единице. Но оператор проектирования может быть кратным единице только тогда, когда он равен 0 или 1. Следовательно, представление неприводимо.
Определение 2.6 Всякий линейный оператор Т : Н → Н΄ такой, что Тπ(х)=π΄(х)Т для любого хА, называется оператором сплетающим π и π΄.
Пусть Т : Н → Н΄ - оператор, сплетающий π и π΄. Тогда Т* : Н΄ → Н является оператором, сплетающим π΄ и π, так как
Т* π΄(х) = (π΄(х)Т)* = (Тπ(х*))* = π(х)Т*
Отсюда получаем, что
Т* Тπ(х)=Т* π΄(х)Т= π(х)Т*Т (2.1.)
Поэтому |T| = (T*T)1/2 перестановочен с π(А). Пусть Т = U|T| - полярное разложение Т. Тогда для любого хА
Uπ(х)|T| = U|T| π(х)= Тπ(х)= π΄(х)Т=π΄(х)U|T| (2.2.)
Если KerT={0}, то |T| (Н) всюду плотно в Н и из (2.2.) следует
Uπ(х) = π΄(х)U (2.3.)
Если, кроме того, = Н΄, то есть если KerT*={0}, то U является изоморфизмом Н и Н΄ и (2.3.) доказывает что π и π΄ эквивалентны.
Пусть π и π΄ - неприводимые представления *-алгебры А в гильбертовых пространствах Н и Н΄ соответственно. Допустим, что существует ненулевой сплетающий оператор Т : Н → Н΄. Тогда из (2.1.) и теоремы 2.6. следует, что Т*Т и ТТ* - скалярны (≠0) и π, π΄ эквивалентны.
2.4. Конечномерные представления.
Теорема 2.7. Пусть π – конечномерное представление *-алгебры А. Тогда π = π1…..πn , где πi неприводимы.
Доказательство. Если dimπ = 0 (n=0), то все доказано. Предположим, что dimπ = q и что наше предложение доказано при dimπ Разложение π = π1…..πn не единственно. Тем не менее, мы получим некоторую теорему единственности. Пусть ρ1, ρ2 – два неприводимых подпредставления π. Им отвечают инвариантные подпространства Н1 и Н2. Пусть Р1 и Р2 – проекторы Н на Н1 и Н2. Они коммутируют с π(А). Поэтому ограничение Р2 на Н1 есть оператор, сплетающий ρ1 и ρ2. Следовательно, если Н1 и Н2 не ортогональны, то из пункта 2.3. следует, что ρ1 и ρ2 эквивалентны. Это доказывает, что любое неприводимое подпредставление π эквивалентно одному из πi . Итак, перегруп- пировав πi , получаем, что π = ν1…..νm, где каждое νi есть кратное ρiνi΄ неприводимого представления νi΄, и νi΄ попарно эквивалентны. Если ρ – неприводимое представление π, то предыдущее рассуждение показывает, что соответствующее инвариантное подпространство Н΄ ортогонально всем инвариантным подпространствам Нi, отвечающих νi, кроме одного. Поэтому Н΄ содержится в одном из Нi. Это доказывает, что каждое пространство Нi определяется однозначно: Нi – это подпространство Н, порожденное пространствами подпредставлений π, эквивалентных νi΄. Таким образом, доказано предложение. Теорема 2.8. В разложении π = ρ1ν1΄…..ρmνm΄ представления π, (где ν1΄,…, νm΄ неприводимы и неэквивалентны) целые числа ρi и классы представлений νi΄ определяются единственным образом, как и пространства представлений. 2.5. Интегрирование и дезинтегрирование представлений. Напомним определение борелевского пространства. Определение 2.7. Борелевским пространством называется множество Т, снабженное множеством В подмножеств Т, обладающим следующими свойствами: ТВ, ØВ, В инвариантно относительно счетного объединения, счетного пересечения и перехода к дополнению. Определение 2.8. Пусть Т1, Т2 – борелевские пространства. Отображение f: Т1→Т2 называется борелевским, если полный прообраз относительно f любого множества в Т2 есть борелевское множество в Т1. Дадим несколько вспомогательных определений и утверждений. Пусть Т – борелевское пространство и μ – положительная мера на Т. Определение 2.9. μ – измеримое поле гильбертовых пространств на Т есть пара ε = ((H(t))tT, Г), где (H(t))tT – семейство гильбертовых пространств, индексы которых пробегают Т, а Г – множество векторных полей, удовлетворяющее следующим условиям: (i) Г – векторное подпространство Н(t); существует последовательность (х1, х2,…) элементов Г таких, что для любого tT элементы хn(t) образуют последовательность H(t); для любого хГ функция t→||x(t)|| μ – измерима; пусть х – векторное поле; если для любого yГ функция t→(x(t), y(t)) μ – измерима, то хГ. Пусть ε = ((H(t))tT, Г) μ – измеримое поле гильбертовых пространств на Т. Векторное поле х называется полем с интегрируемым квадратом, если хГ и ||x(t)||2 dμ(t) < +∞. Если х, y – с интегрируемым квадратом, то х+y и λх (λС) – тоже и функция t →(x(t), y(t)) интегрируема; положим (x, y) = (x(t), y(t)) dμ(t) Тогда векторные поля с интегрируемым квадратом образуют гильбертово пространство Н, называемое прямым интегралом Н(t) и обозначаемое x(t)dμ(t). Определение 2.10. Пусть ε = ((H(t))tT, Г) – измеримое поле гильбер- товых пространств на Т. Пусть для любого tT определен оператор S(t)L(H(t)). Если для любого хT поле t→S(t)x(t) измеримо, то t→S(t) называется измеримым операторным полем. Пусть Т – борелевское пространство, μ - положительная мера на Т, t→Н(t) - μ - измеримое поле гильбертовых пространств на Т. Пусть для каждого tT задано представление π(t) *-алгебры А в Н(t): говорят, что t→π(t) есть поле представлений А. Определение 2.11. Поле представлений t→π(t) называется измеримым, если для каждого хА поле операторов t→π(t)х измеримо. Если поле представлений t→π(t) измеримо, то для каждого хА можно образовать непрерывный оператор π(х)=π(t) (x) dμ(t) в гильбертовом прост- ранстве Н =Н(t) dμ(t). Теорема 2.9. Отображение х→π(х) есть представление А в Н. Доказательство. Для любых х, yА имеем π(х+y) = π(t) (x+y) dμ(t) = (π(t) (x) + π(t) (y)) dμ(t) =π(t) (x )dμ(t) + +π(t) (y) dμ(t) = π(х) +π(y) Аналогично π(λх) = λπ(х), π(хy) = π(х) π(y), π(х*)=π(х)* Определение 2.12. В предыдущих обозначениях π называется прямым интегралом π(t) и обозначается π =π(t) dμ(t). Определение 2.13. Операторное поле t→φ(t)I(t)L(H(t)) где I(t)-единичный оператор в H(t), называется диагональным оператором в Н=Н(t)dμ(t). Пусть ε = ((H(t))tT, Г) – μ-измеримое поле гильбертовых пространств на Т, μ1 – мера на Т, эквивалентная μ (то есть каждая из мер μ1, μ абсолютно непрерывна по другой), и ρ(t)=. Тогда отображение, которое каждому хН==Н(t)dμ(t) составляет поле t→ρ(t)-1/2х(t)Н1=Н(t) dμ1(t), есть изометрический изоморфизм Н на Н1, называемый каноническим. Действительно, ||ρ(t)-1/2х(t)dμ1(t)||2 = ||х(t)||2ρ(t)-1 dμ1(t) = ||х(t)||2dμ1(t) = ||х(t)||2 Теорема 2.10. Пусть Т – борелевское пространство, μ – мера на Т, t→Н(t) – измеримое поле гильбертовых пространств на Т, t→π(t) – измеримое поле представлений А в Н(t), Н =Н(t) dμ(t) , π1==π(t )dμ(t), Д – алгебра диагональных операторов в Н. Пусть μ1 – мера на Т, эквивалентная μ, Н1 =Н(t) d&