Техническое зрение роботов

1.ВВЕДЕНИЕ

С целью классификации методов и подходов, используемых в си­стемах технического зрения, зрение разбито на три ос­новных подкласса: зрение низкого, среднего и высокого уров­ней. Системы технического зрения низкого уровня предназначены для обработки информа­ции с датчиков очувствления.

Эти системы можно отнести к классу «интеллектуальных» машин, если они обладают следующими признаками (призна­ками интеллектуального поведения):

1) возможностью выделения существенной информации из множества независимых признаков;

2) способностью к обучению на примерах и обобщению этих знаний с целью их применения в новых ситуациях;

3) возможностью восстановления событий по неполной ин­формации;

4) способностью определять цели и формулировать планы для достижения этих целей.

Создание систем технического зрения с такими свойствами для ограниченных видов рабочего пространства в принципе воз­можно, но характеристики таких систем далеки от возможностей человеческого зрения. В основе технического зрения лежит аналитическая формализация, направленная на решение конкрет­ных задач. Машины с сенсорными характеристиками, близкими к возможностям человека, по-видимому, появятся еще не скоро. Однако отметим, что копирование природы не является единст­венным решением этой проблемы. Читателю наверняка известны ранние экспериментальные образцы аэропланов с машущими крыльями и другими особенностями полета птиц. Современное решение задачи о полете в пространстве в корне отличается от решений, подсказанных природой. По скорости и достижимой высоте самолеты намного превосходят возможности птиц.

Системы технического зрения среднего уровня связаны с задачами сегментации, описания и распознавания отдельных объектов. Эти задачи охватывают множество подходов, ос­нованных на аналитических представлениях. Системы техниче­ского зрения высокого уровня решают проблемы, рассмотренные выше. Для более ясного понимания проблем технического зре­ния высокого уровня и его связи с техническим зрением низкого и среднего уровней введем ряд ограничений и упростим решае­мую задачу.


2.СЕГМЕНТАЦИЯ

Сегментацией называется процесс подразделения сцены на составляющие части или объекты. Сегментация является одним из основных элементов работы автоматизированной системы технического зрения, так как именно на этой стадии обработки объекты выделяются из сцены для дальнейшего распознавания и анализа. Алгоритмы сегментации, как правило, основываются на двух фундаментальных принципах: разрывности и подобии. В первом случае основной подход основывается на определении контуров, а во втором — на определении порогового уровня и расширении области. Эти понятия применимы как к статиче­ским, так и к динамическим (зависящим от времени) сценам. В последнем случае движение может служить мощным средст­вом для улучшения работы алгоритмов сегментации.

2.1.Проведение контуров и определение границы

Методы - вычисление градиента, пороговое разделение - определяют разрывы в интенсивности представления образа объекта. В идеальном слу­чае эти методы определяют пикселы, лежащие на границе меж­ду объектом и фоном. На практике данный ряд пикселов редко полностью характеризует границу из-за шума, разрывов на гра­нице вследствие неравномерной освещенности и других эффек­тов, приводящих к размытию изображения. Таким образом, ал­горитмы обнаружения контуров сопровождаются процедурами построения границ объектов из соответствующих последователь­ностей пикселов. Ниже рассмотрено несколько методик, при­годных для этой цели.

2.1.1.Локальный анализ.

Одним из наиболее простых подходов соединения точек контура является анализ характеристик пик­селов в небольшой окрестности (например, в окрестности раз­мером 3 X 3 или 5 X 5) каждой точки (х, у) образа, который уже подвергся процедуре обнаружения контура. Все точки, яв­ляющиеся подобными (определение критерия подобия дано ниже), соединяются, образуя границу из пикселов, обладающих некоторыми общими свойствами.

При таком анализе для установления подобия пикселов кон­тура необходимо определить:

1 ) величину градиента, требуемого для построения контурного пиксела,

2) направление градиен­та.

Первая характеристика обозначается величиной G{f(x, у)).

Таким образом, пиксел контура с координатами (х', у') подобен по величине в определенной ранее окрестности (х, у) пикселу с координатами (х, у), если справедливо неравенство

где Тпороговое значение.

Направление градиента устанавливается по углу вектора градиента, определенного в уравнении

где —угол (относительно оси х), вдоль которого скорость изменения имеет наибольшее значение. Тогда можно сказать, что угол пиксела контура с координатами {х', у') в некоторой окрестности (х, у) подобен углу пиксела с координатами {х, у) при выполнении следующего неравенства:

где Апороговое значение угла. Необходимо отметить, что на­правление контура в точке {х, у) в действительности перпенди­кулярно направлению вектора градиента в этой точке. Однако для сравнения направлений неравенство дает эквивалент­ные результаты.

Основываясь на этих предположениях, мы соединяем точку в некоторой окрестности (х, у) с пикселом, имеющим коорди­наты (х, у), если удовлетворяются критерии по величине и направлению. Двигаясь от пиксела к пикселу и представляя каждую присоединяемую точку как центр окрестности, процесс повторяется для каждой точки образа. Для установления соот­ветствия между уровнями интенсивности освещения и последо­вательностями пикселов контура применяется стандартная биб­лиотечная процедура.

Цель состоит в определении размеров прямоугольни­ков, с помощью которых можно построить качественное изобра­жение. Построение таких прямоугольников осуществляется в ре­зультате определения строго горизонтальных и вертикальных контуров. Дальнейший процесс состоял в соединении сегментов контура, разделенных небольшими промежутками, и в объединении отдельных корот­ких сегментов.

2.1.2.Глобальный анализ с помощью преобразования Хоуга.

Рас­смотрим метод соединения граничных точек путем определения их расположения на кривой специального вида. Первоначально предполагая, что на плоскости ху образа дано п точек, требуется найти подпоследовательности точек, лежащих на прямых линиях. Одно из возможных решений состоит в построении всех линий, проходящих через каждую пару точек, а затем в нахож­дении всех подпоследовательностей точек, близких к определен­ным линиям. Задача, связанная с этой процедурой, заключается в нахождении п(п 1)/2 ~ п2 линий и затем в осуществлении п(п(п1))/2 ~ п3 сравнений каждой точки со всеми линиями. Этот процесс трудоемок с вычислительной точки зрения за ис­ключением самых простых приложений.

Данную задачу можно решить по-другому, применяя подход, предложенный Хоугом и называемый преобразованием Хоуга. Рассмотрим точку (хi yi) и общее уравнение прямой ли­нии у:= аxi + i. Имеется бесконечное число линий, проходящих через точку (хi yi), но все они удовлетворяют уравнению у:= аxi + i при различных значениях а и b. Однако, если мы за­пишем это уравнение в виде b = iа + yi и рассмотрим пло­скость аb (пространство параметров), тогда мы имеем уравне­ние одной линии для фиксированной пары чисел (хi yi). Более того, вторая точка j, уj) также имеет в пространстве пара­метров связанную с ней линию, которая пересекает другую ли­нию, связанную с точкой (хi yi) в точке (а', b’), где значения а' и b’—параметры линии, на которой расположены точки (хi yi) и (хj, уj) в плоскости ху. Фактически все точки, расположен­ные на этой линии, в пространстве параметров будут иметь ли­нии пересечения в точке (а', b’).

Вычислительная привлекательность преобразования Хоуга заключается в разделении пространства параметров на так на­зываемые собирающие элементы , где (aмакс, амин) и (bмакс, bмин)—допустимые величины параметров линий. Собирающий элемент A (i, j) соответствует площади, связанной с ко­ординатами пространства параметров (аi, j). Вначале эти элементы считаются равными нулю. Тогда для каждой точки (xk, уk) в плоскости образа мы полагаем параметр а равным каж­дому из допустимых значений на оси а и вычисляем соответст­вующее b, используя уравнение = -хk + yk Полученное значение b затем округляется до ближайшего допустимого зна­чения на оси b. Если выбор aр приводит к вычислению bq, мы полагаем А(р, q) ==А(р, q) + 1. После завершения этой про­цедуры значение М в элементе A (i, j) соответствует М точкам в плоскости xy, лежащим на линии y=aix+b. Точность рас­положения этих точек на одной прямой зависит от числа раз­биений плоскости аb. Отметим, что, если мы разбиваем ось а на К частей, тогда для каждой точ­ки (xk, уk) мы получаем К зна­чений b, соответствующих К воз­можным значениям а. Посколь­ку имеется п точек образа, про­цесс состоит из пК вычислитель­ных операций. Поэтому приве­денная выше процедура линейна относительно п и имеет меньшее число вычислительных опера­ций, чем процедура, описанная выше, если К<=п.

Проблема, связанная с пред­ставлением прямой линии урав­нением у = ах + b, состоит в том, что оба параметра а и стремятся к бесконечности, если линия принимает вертикаль­ное положение. Для устранения этой трудности используется нормальное представление прямой линии в виде

xcos+ysin=.

Это представление для построения таблицы собирающих элементов используется так же, как метод, изложенный выше, но вместо прямых линий мы имеем синусоидальные кривые в плоскости . Как и прежде, М точек, лежащих на прямой xcosi+уsini == i, соответствуют М синусоидальным кривым, кото­рые пересекаются в точке (i,i) пространства параметров. Если используется метод возрастания и нахождения для него соот­ветствующего , процедура дает М точек в собирающий элемент А (i, j), связанный с точкой (i,i).

2.1.3.Глобальный анализ с помощью методов теории графов.

Изложенные выше методы основаны на задании последовательности точек контура, полученных в результате градиентного пре­образования. Этот метод редко применяется для предваритель­ной обработки данных в ситуациях, характеризуемых высоким уровнем шума, вследствие того, что градиент является произ­водной и усиливает колебания интенсивности. Рассмотрим гло­бальный подход, основанный на представлении сегментов кон­тура в виде графа и поиске на графе пути наименьшей стоимости, который соответствует значимым контурам. Этот подход представляет приближенный метод, эффективный при наличии шума. Как и следует ожидать, эта процедура значительно слож­нее и требует больше времени обработки, чем методы, изложен­ные выше.

Сначала дадим несколько простых определений. Граф G = (N, А) представляет собой конечное, непустое множество вершин N вместе с множеством А неупорядоченных пар различ­ных элементов из N. Каждая пара из А называется дугой.

Граф, в котором дуги являются направленными, называется на­правленным графом. Если дуга выходит из вершины ni, к вер­шине пj, тогда пj называется преемником вершины ni. В этом случае вершина i называется предшественником вершины пj. Процесс идентификации преемников каждой вершины назы­вается расширением этой вершины. В каждом графе опреде­ляются уровни таким образом, чтобы нулевой уровень состоял из единственной вершины, называемой начальной, а последний уровень—из вершин, называемых целевыми. Каждой дуге (niпj) приписывается стоимость c(niпj). Последовательность вер­шин п1, n2, ..., nk, где каждая вершина ni является преемником вершины ri-1, называется путем от i к пk, а стоимость пути определяется формулой

.

Элемент контура мы определим как границу между двумя пик­селами р и q. В данном контексте под контуром пони­мается последовательность элементов контура.


2.2.Определение порогового уровня

Понятие порогового уровня (порога) тест вида

Т = Т (х, у, р (х, у), f (х, у)),

где f(x, у)интенсивность в точке (х, у), р(х, у)некоторое локальное свойство, определяемое в окрестности этой точки. Пороговое изображение дается следующим выражением:


так что пикселы в g(x, у), имеющие значение 1, соответствуют объектам, а пикселы, имеющие значение 0, соответствуют фону. В уравнении предполагается, что интенсивность объек­тов больше интенсивности фона. Противоположное условие по­лучается путем изменения знаков в неравенствах.

2.2.1.Глобальные и локальные пороги.

Если значение Т в уравне­нии зависит только от f(x, у), то, порог называется глобальным. Если значение Т зависит как от f(x, у), так и от р(х, у), порог называется локальным. Если, кроме того, Т зависит от пространственных координат х а у, в этом случае он называется динамическим порогом.

Глобальные пороги применяются в ситуациях, когда имеется явное различие между объектами и фоном и где освещенность достаточно однородна. Методы обратной и структурированной освещенности, обычно дают изображе­ния, которые могут быть сегментированы путем применения глобальных порогов. Но, как правило, произвольное освещение рабочего пространства приводит к изображениям, которые, если исходить из определения порогового уровня, требуют локального анализа для компенсации таких эффектов, как неоднородность освещения, тени и отражение.

Ниже мы рассмотрим ряд методов для выбора порогов, ис­пользуемых при сегментации. Хотя некоторые из них могут при­меняться для выбора глобального порога, они обычно исполь­зуются в ситуациях, требующих анализа локального порога.

2.2.2.Выбор оптимального порога.

Часто рассматривают гисто­грамму, состоящую из суммы значений функции плотности ве­роятности. В случае бимодальной гистограммы аппроксимирую­щая ее функция дается уравнением

p(z)=P1p1(z)+P2p2(z),

где интенсивность zслучайная переменная величина, p1(z) и p2(z)функции плотности вероятности, a P1 и P2 – априорные вероятности. В данном случае априорные вероятности означают появление двух видов уровней интенсивности на образе. Полная гистограмма может быть аппроксимирована суммой двух функций плотности вероятности. Если известно, что объект состоит из светлых пиксе­лов и они занимают 20 % площади образа, то Pi ==0,2. Необхо­димо, чтобы

Р1+Рг=1.

В данном случае это означает, что на остальную часть образа приходится 80 % пикселов фона. Введем две следующие функции от z:

d1(z)=P1p1(z),

d2(z)=P1p1(z).

Из теории принятия решений известно, что средняя ошибка определения пиксела объекта в качестве фона (и на­оборот) минимизируется с помощью следующего правила: рас­сматривая пиксел со значением интенсивности z, мы подстав­ляем это значение z в уравнения (8.2-13) и (8.2-14). Затем мы определяем пиксел как пиксел объекта, если d1(z) >d2(z), или как пиксел фона, если d2(2) > d1(z). Тогда оптимальный порог определяется величиной z, для которой d1{z)=d2(z). Таким образом, полагая в уравнениях z=T, полу­чаем, что оптимальный порог удовлетворяет уравнению

P1р1(T)=P2p2(T).


рис. Гистограмма интенсивности (а) и ее аппроксимация в виде •суммы двух функций плотности вероятности (б).


Итак, если известны функциональные зависимости p1(z) и р2(г),. это уравнение можно использовать для нахождения оптималь­ного порога, который отделяет объекты от фона. Если этот порог известен, уравнение может быть использовано для сегментации данного образа.

2.2.3.Определение порогового уровня на основе характеристик границы.

Одним из наиболее важных аспектов при выборе по­рогового уровня является возможность надежно идентифициро­вать модовые пики для данной гистограммы. Это важно при автоматическом выборе порогового уровня в ситуациях, когда характеристики образа меняются вследствие большого разброса интенсивности. Из изложенного выше очевидно, что возможность выбора «хорошего» порогового уровня может быть существенно увеличена в случае, если пики гистограмм являются высокими, узкими, симметричными и разделены глубокими провалами.

Одним из подходов для улучшения вида гистограмм является рассмотрение только тех пикселов, которые лежат на границе (или около нее) между объектами и фоном. Одно из очевидных улучшений состоит в том, что этот подход позволяет получать гистограммы менее зависимыми от отношения между объектом и фоном. Например, гистограмма интенсивности образа, состав­ленного из маленького объекта на большой площади постоян­ного фона, определялась бы большим пиком вследствие концент­рации пикселов фона. С другой стороны, результирующие гисто­граммы имели бы пики с более сбалансированными высотами, если бы рассматривались пикселы, лежащие только на (или около) границе между объектом и фоном. Кроме того, вероят­ность расположения пиксела на границе объекта практически равна вероятности того, что он лежит на границе фона, что улучшает симметрию гистограммных пиков. Окончательно, как показано ниже, использование пикселов, которые удовлетво­ряют некоторым простым критериям, основанным на операторах градиента и Лапласа, приводит к увеличению провалов между пиками гистограммы.

Выше мы неявно подразумевали, что граница между объек­тами и фоном известна. Очевидно, что во время проведения сег­ментации эта информация отсутствует, поскольку нахождение раздела между объектами и фоном является окончательной целью приведенной здесь процедуры. Однако, что, вычислив градиент пиксела, можно определить, ле­жит ли он или не лежит на контуре. Кроме того, лапласиан мо­жет дать информацию о том, лежит ли данный пиксел на темной (т. е. фон) или светлой (объект) стороне контура. С внутренней стороны идеального контура лапласиан равен нулю, поэтому на практике можно ожидать, что провалы гистограмм, образованных пикселами, выбранными по критерию градиент/лапласиан, будут располагаться достаточно редко и иметь желаемую высоту.

Градиент G(f(x,y)) любой точки образа и лапласиан L(f{x, у)). Эти два свойства можно использовать для фор­мирования трехуровнего образа:



(где символы 0, +, - представляют три различных уровня осве­щенности, а Тпороговый уровень. Предположим, что темный объект располагается на светлом фоне, тогда применение уравнения дает образ s(x, у), в котором все пикселы, не лежащие на контуре (для них значе­ние G(f (х, у)) меньше Т, помечены 0, все пикселы на темной стороне контура помечены + и все пикселы на светлой стороне контура помечены —. Для светлого объекта на темном фоне символы + и - в уравнении (8.2-24) меняются местами.

Только что изложенная процедура может применяться для создания сегментированного, бинарного образа, в котором 1 со­ответствует объектам, представляющим интерес, и 0—фону. Отметим, что перемещение (вдоль горизонтальных или вер­тикальных линий сканирования) от светлого фона к темному объекту должно характеризоваться заменой знака - фона на -1- объекта s(x, у). Внутренняя область объекта состоит из пикселов, помеченных либо 0 либо +. Окончательно перемещение от объекта к фону характеризуется заменой знака + на —. Таким образом, горизонтальные или вертикальные линии сканирования, содержащие части объекта, имеют следующую структуру:

(...)(-, +)(0 или +)(+, -)(•••),

где (...) является произвольной комбинацией +, - или 0. Остальные скобки содержат точки объекта и помечены 1. Все другие пикселы вдоль той же линии сканирования помечаются 0, за исключением всех последовательностей из (0 или +), огра­ниченных (-, +) и (+, -).

2.2.4.Определение порогового уровня, основанное на нескольких переменных.

Изложенные выше методы связаны с определением порогового уровня для единст­венного переменного значения интенсивности. В некоторых приложениях можно исполь­зовать более одной перемен­ной для характеристики каждо­го пиксела образа, увеличивая таким образом не только сте­пень различия между объек­том и фоном, но и между сами­ми объектами. Одним из наи­более значимых примеров явля­ется цветное зрение, где исполь­зуются красные, зеленые и голубые компоненты (КЗГ) для формирования составно­го цветного образа. В этом случае каждый пиксел характеризуется тремя переменными и это позволяет строить трехмерную гистограмму. Основная процедура та же, что и для одной переменной. Пусть, например, даны три 16-уровневых изображения, соответствующие КЗГ компонентам датчика цвета. Сформируем кубическую решетку 16х16х16 и поместим в каждый элемент пикселы, КЗГ ком­поненты которых имеют интенсивности, соответствующие коор­динатам, определяющим положение этого элемента. Число то­чек в каждом элементе решетки может быть затем разделено на общее число пикселов образа для формирования нормированной гистограммы.

Теперь выбор порога заключается в нахождении групп точек в трехмерном пространстве, где каждая «компактная» группа аналогична основной моде гистограммы одной переменной. На­пример, предположим, что мы ищем две значимые группы точек данной гистограммы, где одна группа соответствует объекту, а другая—фону. Принимая во внимание, что теперь каждый пик­сел имеет три компоненты и может быть рассмотрен как точка трехмерного пространства, можно сегментировать образ с по­мощью следующей процедуры. Для каждого пиксела образа вычисляется расстояние между этим пикселом и центром каж­дой группы. Тогда, если пиксел располагается рядом с центром группы точек объекта, мы помечаем его 1; в противном случае мы помечаем его 0. Это понятие легко распространить на боль­шую часть компонентов пиксела и соответственно на большую часть групп. Основная сложность состоит в том, что определение значимых групп, как правило, приводит к довольно сложной задаче, поскольку число переменных возрастает.


2.3.Областно-ориентированная сегментация

2.3.1.Основные определения.

Целью сегментации является разде­ление образа на области. Рассмотрим методы сегмен­тации, основанные на прямом нахождении областей.

Пусть R область образа. Рассмотрим сегментацию как процесс разбиения R на подобластей R1, R2, ..., Rn, так что

1.

2. Piсвязная область, i= 1, 2, ..., п,

3. Ri Ri= для всех i и j, i j,

4. P(Ri) есть ИСТИНА для i= 1, 2, ..., n;

5. P(Ri U Ri) есть ЛОЖЬ для i j, где P(Ri)— логический предикат, определенный на точках из множества Ri, и -пу­стое множество.

Условие 1 означает, что сегментация должна быть полной, т. е. каждый пиксел должен находиться в образе. Второе усло­вие требует, чтобы точки в области были связными. Условие 3 указывает на то, что области не должны пересекать­ся. Условие 4 определяет свойства, которым должны удовлетво­рять пикселы в сегментированной области. Простой пример: Р(Ri) = ИСТИНА, если все пикселы в Ri имеют одинаковую интенсивность. Условие 5 означает, что области Ri и Ri разли­чаются по предикату Р.

2.3.2.Расширение области за счет объединения пикселов.

Расшире­ние области сводится к процедуре группирования пикселов или подобластей в большие объединения. Простейшей из них яв­ляется агрегирование пикселов. Процесс начинается с выбора множества узловых точек, с которых происходит расширение области в результате присоединения к узловым точкам сосед­них пикселов с похожими характеристиками (интенсивность, текстура или цвет). Пусть цифры внутри ячеек указывают интенсивность. Пусть точки с координатами (3, 2) и (3, 4) используются как узловые. Выбор двух начальных точек приведет к сегментации образа на две области: области R1, свя­занной с узлом (3, 2), и области R2, связанной с узлом (3, 4). Свойство Р, которое мы будем использовать для того, чтобы от­нести пиксел к той или иной области, состоит в том, что модуль разности между интенсивностями пиксела и узловой точки не превышает пороговый уровень Т. Любой пиксел, удовлетворяю­щий этому свойству одновременно для обоих узлов, произвольно попадает в область Ri. В этом случае сегментация проводится для двух областей, причем точки в R1 обозначаются буквой а, точки в R2 буквой . Необходимо отметить, что независимо от того, в какой из этих двух областей будет взята начальная точка, окончательный результат будет один и тот же. Если, с другой сто­роны выбрать Т = 8, была бы получена единственная область

Предыдущий пример, не­смотря на его простоту, иллюстрирует некоторые важные проблемы расширения области. Двумя очевидными проблема­ми являются: выбор начальных узлов для правильного представления областей, представляющих интерес, и опреде­ление подходящих свойств для включения точек в различные области в процессе расшире­ния. Выбор множества, состоя­щего из одной или нескольких начальных точек, следует из по­становки задачи. Например, в военных приложениях объек­ты, представляющие интерес, имеют более высокую темпера­туру, чем фон, и поэтому про­являются более ярко. Выбор наиболее ярких пикселов явля­ется естественным начальным шагом в алгоритме процесса расширения области. При от­сутствии априорной информа­ции можно начать с вычисле­ния для каждого пиксела на­бора свойств, который навер­няка будет использован при установлении соответствия пик­села той или иной области в процессе расширения. Если ре­зультатом вычислений являют­ся группы точек (кластеры), тогда в качестве узловых бе­рутся те пикселы, свойства ко­торых близки к свойствам центроидов этих групп. Так, в примере, приведенном выше, гистограмма интенсивностей показала бы, что точки с интен­сивностью от одного до семи являются доминирующими. Выбор критерия подобия зависит не только от задачи, но также от вида имеющихся данных об образе. Например, анализ информации, полученной со спутников, существенно зависит от использования цвета. Задача анализа значительно усложнится при использовании только монохроматических образов. К сожа­лению, в промышленном техническом зрении возможность полу­чения мультиспектральных и других дополнительных данных об образе является скорее исключением, чем правилом. Обычно анализ области должен осуществляться с помощью набора дес­крипторов, включающих интенсивность и пространственные ха­рактеристики (моменты, текстуру) одного источника изображе­ния. Отметим, что применение только одних дескрипторов может приводить к неправильным результатам, если не используется информация об условиях связи в процессе расширения области. Это легко продемонстрировать при рассмотрении случайного рас­положения пикселов с тремя различными значениями интенсив­ности. Объединение пикселов в «область» на основе признака одинаковой интенсивности без учета условий связи приведет к бессмысленному результату при сегментаци.

Другой важной проблемой при расширении области является формулировка условия окончания процесса. Обычно процесс расширения области заканчивается, если больше не существует пикселов, удовлетворяющих критерию принадлежности к той или иной области. Выше упоминались такие критерии, как интен­сивность, текстура и цвет, которые являются локальными по своей природе и не учитывают «историю» процесса расширения области. Дополнительный критерий, повышающий мощность алгоритма расширения области, включает понятие размера, схо­жести между пикселом-кандидатом и только что созданными пикселами (сравнение интенсивности кандидата и средней ин­тенсивности области), а также формы области, подлежащей расширению. Использование этих типов дескрипторов основано на предположении, что имеется неполная информация об ожи­даемых результатах.

2.3.2.Разбиение и объединение области.

Изложенная выше про­цедура расширения области начинает работу с заданного мно­жества узловых точек. Однако можно сначала разбить образ на ряд произвольных непересекающихся областей и затем объ­единять и/или разбивать эти области с целью удовлетворения условий. Итеративные алгоритмы разбиения и объединения, работа которых направле­на на выполнение этих ограничений, могут быть изложены сле­дующим образом.

Пусть R является полной областью образа, на которой опре­делен предикат Р. Один из способов сегментации R состоит в успешном разбиении площади образа на все меньшие квадрат­ные области, так что для каждой области Ri, P(Ri) = ИСТИНА. Процедура начинает работу с рассмотрения всей области R. Если Р(R)= ЛОЖЬ, область разбивается на квадранты. Если для какого-либо квадранта Р принимает значение ЛОЖЬ, этот квадрант разбивается на подквадранты и т. д. Этот метод разбиения обычно представляется в виде так называемого квадродерева (дерева, у которого каждая вершина имеет только че­тыре потомка). Отметим, что корень дерева соответствует всему образу,а каждая вершина - разбиению. В данном случае только R4 подлежит дальнейшему разбиению. Если применять только опе­рацию разбиения, можно ожидать, что в результате окончатель­ного разбиения всей площади образа на подобласти последние будут иметь одинаковые свойства. Это можно устранить допу­стимым объединением так же, как и разбиением. Для того чтобы удовлетворить условиям сегментации, введенным выше, необ­ходимо объединять только те соседние области, пикселы которых удовлетворяют предикату Р, таким образом, две соседние обла­сти Ri и Rk объединяются только в том случае, если P(Ri U Rk) = ИСТИНА.

Изложенное выше можно представить в виде процедуры, где на каждом шаге выполняются следующие операции:

1. Разбиение области Ri, для которой Р {Ri) = ЛОЖЬ, на четыре непересекающихся квадранта.

2. Объединение соседних областей Ri и Rk, для которых Р (Ri U Rk) = ИСТИНА.

3. Выход на останов, когда дальнейшее объединение или разбиение невозможно.

Возможны варианты этого алгоритма. Например, можно сначала разбить образ на квадратные блоки. Дальнейшее разбиение выполняется по изложенному выше способу, но вначале объединение ограничивается группами из четырех бло­ков, являющихся в квадродереве потомками и удовлетворяю­щих предикату Р. Когда дальнейшее объединение этого типа становится невозможным, процедура завершается окончательным объединением областей согласно шагу 2. В этом случае объединяемые области могут иметь различный размер. Основ­ным преимуществом этого подхода является использование од­ного квадродерева для разбиения и объединения до шага, на котором происходит окончательное объединение.


2.4. Применение движения

Движение представляет собой мощное средство, которое ис­пользуется человеком и животными для выделения интересую­щих их объектов из фона. В системах технического зрения ро­ботов движение используется при выполнении различных операций на конвейере, при перемещении руки, оснащенной дат­чиком, более редко при перемещении всей робототехнической системы.

2.4.1.Основной подход.

Один из наиболее простых подходов для определения изменений между двумя кадрами изображения (образами) f(x, у, ti) и f(x, у, t,), взятыми соответственно в моменты времени ti и tj, основывается на сравнении соответ­ствующих пикселов этих двух образов. Для этого применяется процедура, заключающаяся в формировании так называемой разности образов.

Предположим, что мы имеем эталонный образ, имеющий только стационарные компоненты. Если сравним этот образ с таким же образом, имеющим движущиеся объекты, то разность двух образов получается в результате вычеркивания стацио­нарных компонент (т. е. оставляются только ненулевые записи, которые соответствуют нестационарным компонентам изобра­жения).

Разность между двумя кадрами изображения, взятыми в мо­менты времени ti и tj, можно определить следующим образом:


dij(x,y) = (*)


где —значение порогового уровня. Отметим, что dij(x, у) при­нимает значение 1 для пространственных координат (х, у) только в том случае, если два образа в точке с этими координа­тами существенно различаются по интенсивности, что опреде­ляется значением порогового уровня .

При анализе движущегося образа все пикселы изображений разности dij(x, у), имеющие значение 1, рассматриваются как результат движения объекта. Этот подход приметим только в том случае, если два образа зарегистрированы и освещен­ность имеет относительно постоянную величину в пределах границ, устанавливаемых пороговым уровнем . На практике записи в dij(x, у), имеющие значение 1, часто появляются в ре­зультате действия шума. Обычно на разности двух кадров изо­бражения такие значения выглядят как изолированные точки. Для их устранения применяется простой подход, заключающийся в формировании 4- или 8-связных областей из единиц в dij(x, у), и затем пренебрегают любой областью с числом записей, мень­шим заранее заданного. При этом можно не распознать малые и/или медленно движущиеся объекты, но это увеличивает ве­роятность того, что остающиеся записи в разности двух кадров изображения действительно соответствуют движению.

2.4.2.Аккумулятивная разность.

Как говорилось выше, разность кадров благодаря шуму часто содержит изолированные записи. Несмотря на то что число таких записей может быть сокращено или полностью ликвидировано в результате анализа связности пороговых уровней, этот процесс может также привести к по­тере изображений малых или медленно движущихся объектов. Ниже излагается подход для решения этой проблемы путем рассмотрения изменения в расположении пикселов на несколь­ких кадрах, т. е. в процесс вводится «память». Основная идея заключается в пренебрежении теми изменениями, которые воз­никают случайно в последовательности кадров и, таким образом, могут быть отнесены к случайному шуму.

Рассмотрим последовательность кадров изображения f(x,y,t1), f(x, у, t2), ..., f(x, у, tn) и допустим, что f(x, у, t1) является эталонным образом. Изображение аккумулятивной разности формируется в результате сравнения эталонного об­раза с каждым образом в данной последовательности. В процедуре построения изображения аккумулятивной разности имеется счетчик, предназначенный для учета расположения пик­селов. Его значение увеличивается каждый раз, когда возникает различие в расположении соответствующих пикселов эталон­ного образа и образа из рассматр

Подобные работы:

Актуально: