Diplom po TEC

Содержание


Аннотация

  1. Выбор основного оборудования и описание принятой компоновки станции

  2. Принципиальная тепловая схема блока и расчет ее на заданный режим

  3. Выбор вспомогательного оборудования тепловой схемы блока

  4. Определение потребностей станции в технической воде, выбор циркуляционных и подпиточных насосов

  5. Определение часового расхода топлива энергетического котла

  6. Топливное хозяйство станции

  7. Расчет и выбор тягодутьевого оборудования

  8. Расчет и выбор дымовой трубы

  9. Мероприятия по технике безопасности и противопожарной безопасности на станции

  10. Охрана окружающей среды на ТЭС

  11. Переоблопачивание лопатками, имеющими вильчатый хвост

  12. Определение технико-экономических показателей станции

  13. Литература


АННОТАЦИЯ


Настоящий дипломный проект предназначен для итоговой государственной аттестаций студентов по специальности 1005 «Теплоэнергетические установки» в Казанском энергетическом техникуме. Проект в соответствии с выданным заданием состоит из 12 разделов:

  1. Выбор основного оборудования и описание принятой компоновки станции

  2. Принципиальная тепловая схема блока и расчет его на заданный режим

  3. Выбор вспомогательного оборудования тепловой схемы блока

  4. Определение потребностей станций в технической воде, выбор циркуляционных и подпиточных насосов

  5. Определение часового расхода топлива энергетических и водогрейных котлов

  6. Топливное хозяйство станции

  7. Расчет и выбор тягодутьевого оборудования

  8. Расчет и выбор дымовой трубы

  9. Мероприятия по технике безопасности и противопожарной технике на станции

  10. Охрана окружающей среды на ТЭС

  11. Переоблопачивание лопатками, имеющими вильчатый хвост

  12. Определение технико – экономических показателей станций

Кроме пояснительной записки дипломный проект имеет 4 листа графического задания. Графическая часть состоит из следующих чертежей:

  1. Поперечный разрез главного корпуса

  2. Развернутая тепловая схема

  3. Переоблопачивание лопатками, имеющими вильчатый хвост

  4. Технико-экономические показатели Казанской ТЭЦ-3


1 ВЫБОР ОСНОВНОГО ОБОРУДОВАНИЯ И ОПИСАНИЕ ПРИНЯТОЙ КОМПОНОВКИ СТАНЦИИ

1.1Выбор основного оборудования станции


1.1.1 Выбор единичной мощности, типа и количества турбин


Единичная мощность и тип теплофикационных агрегатов на ТЭЦ, входящих в энергосистемы, выбираются более крупными с учетом характера и перспективной величины тепловой нагрузки района.

Турбины с производственным отбором пара выбираются с учетом длительного использования этого отбора в течение года. Турбины с противодавлением выбираются для покрытия базовой части производственной, паровой и отопительной нагрузок и не устанавливается первым агрегатом ТЭЦ.

Типы турбин определяются видами тепловых нагрузок ТЭЦ.

На ТЭЦ только с отопительной нагрузкой устанавливают турбины типа Т. При отопительной и производственной нагрузках на ТЭЦ могут устанавливаться турбины типа ПТ или совместно турбины указанных типов Т, ПТ, Р. Перечисленные типы турбин изготавливаются согласно ГОСТу 3618-82.

Выбор единичной мощности турбин производят, исходя из заданной электрической и тепловой нагрузок, отдавая предпочтение агрегатом большей мощности.

По заданным теплофикационным и производственным нагрузкам Казанской ТЭЦ-3 необходима установка турбины типа ПТ-80-130.

Турбина ПТ-80-130 рассчитана для работы со свежим паром с параметрами: давление свежего пара – 13 МПа, температура свежего пара – 540С.


1.1.2 Выбор типа, единичной мощности и количества котлов


На ТЭЦ без промперегрева пара с преобладающей паровой нагрузкой применяются блочные схемы и при соответствующем обосновании с поперечными связями.

Паропроизводительность и число энергетических котлов для турбоустановки ПТ-80-130, которой расширяется Казанская ТЭЦ-3 выбираются по максимальному расходу пара машинным залом с учетом расхода пара на собственные нужды в размере 3%. В случае выхода из работы одного энергетического котла оставшиеся в работе энергетические котлы должны обеспечить максимально длительный отпуск пара на производство и отпуск пара на отопление, вентиляцию и горячее водоснабжение в размере 70% от отпуска тепла на эти цели при расчетной для проектирования систем отопления температуре наружного воздуха.

1.1.2.1 Паропроизводительность энергетического котла определяется по формуле:

= .(1 + α + β) (т/ч) (1.1.2.1)

где = 386,83 т/ч – максимальный расход пара на турбину;

α = 0,03 – запас по производительности;

β = 0,02 – расход на собственные нужды блока.

= 386,83.(1 + 0,03 + 0,02) = 406,17 (т/ч)

По параметрам пара турбины и виду топлива может быть установлен котел типа Е-420-13,8-560-ГМН на начальные параметры пара = 13,8 МПа, = 560 С, эта модель предназначена для работы на газе и мазуте. Технические характеристики: компоновка П-образная, воздухоподогреватель – РВП, ширина – 18,4 м, глубина – 14,5 м, высота – 32,4 м, температура питательной воды – 230 , температура уходящих газов – 109/147 , КПД – 94/93 %.


1.1.3 Выбор водогрейных котлов


Выбор производится по величине пиковой нагрузки ТЭЦ на отопление и горячее водоснабжение:

= 65,53 (МВт)

Количество водогрейных котлов:

= (шт.)

= = 0,66 1 (шт.)

Возможна установка одного водогрейного котла КВ-ГМ-100-150.

Так как установленные на Казанской ТЭЦ-3 пиковые водогрейные котлы обеспечивают необходимую нагрузку, то дополнительный котел не устанавливается.


1.2 Описание принятой компоновки блока


В рассматриваемой компоновке представлен поперечный разрез главного корпуса. Главный корпус представляет собой единое сооружение, состоящее из машинного зала, котельного и промежуточного отделения. Каркас здания образуется железобетонными колоннами.

Машинный зал разделяют по высоте на две части: верхнюю и нижнюю. В верхней части машинного зала, на уровне 11,8 метров, находится турбоагрегат ПТ-80-130. В данной компоновке использовано поперечное размещение турбоагрегатов. В нижней части, которое называется конденсатным отделением, располагается вспомогательное оборудование: конденсатор турбины, подогреватели низкого и высокого давления, сетевые подогреватели, питательные насосы, конденсатные и циркуляционные насосы, и все основные трубопроводы. Под перекрытиями машинного зала, на уровне 28 метров, установлен мостовой кран. Ширина машинного зала 39000 мм.

В котельном отделении главного корпуса располагаются паровые котлы и их вспомогательное оборудование. Котлы установлены без разворота топки. В верхней части котельного отделения, на высоте 38,5 метров, установлен мостовой кран. Ширина котельного отделения 29480 мм.

Между машинным залом и котельным отделением размещается промежуточное отделение. В промежуточном отделении на уровне 22 метров установлен деаэратор и его бак. В нижней части промежуточного отделения располагается РУСН. Ширина промежуточного отделения 1200 мм.

Дутьевой вентилятор и дымосос располагаются вне здания около котельного отделения на нулевой отметки. Также здесь установлен регенеративный воздухоподогреватель.

Рядом с основным зданием размещаются две дымовые трубы высотой 240 м первая и 150 м вторая.


2 ПРИНЦИПИАЛЬНАЯ ТЕПЛОВАЯ СХЕМА БЛОКА И РАСЧЕТ ЕЁ НА ЗАДАННЫЙ РЕЖИМ

2.1 Описание тепловой схемы


Пар из парового котла с параметрами МПа, поступает через стопорный клапан турбины в ЦВД, который имеет 3 отбора. Из регенеративных отборов 1, 2 пар направляется в ПВД7 и ПВД6. Из отбора 3 часть пара направляется на производство внешнему тепловому потребителю, а часть пара поступает в деаэратор и в ПВД5. Затем пар, отработавший в ЦВД турбины поступает в комбинированный цилиндр среднего и низкого давления, который имеет 3 отбора в зоне ЦВД и 1 отбор в зоне ЦНД. Из отборов 4, 5, 6 ЦСД пар поступает в группу подогревателей низкого давления (ПНД4, ПНД3, ПНД2), а также из отбора 5 и 6 часть пара поступает в сетевые подогреватели ПСГ–2 и ПСГ–1, в которых он нагревает сетевую воду движущуюся через ПСГ-1 и ПСГ-2, за счет напора создаваемого сетевым насосом первого подъема. Далее сетевая вода движется через сетевой насос второго подъема в пиковый водогрейный котел.

Пар из отбора 7 ЦНД турбины поступает в ПНД1. Затем пар, совершивший работу в турбине, через выхлопные патрубки поступает в двухпоточный конденсатор, где он охлаждается и конденсируется, отдавая свою теплоту циркуляционной охлаждающей воде. Конденсатным насосом конденсат из конденсатора подается в охладитель пара из эжектора и охладитель пара концевых уплотнений турбины. Далее основной конденсат поступает в ПНД1 где он подогревается паром из 7 отбора ЦНД турбины, а конденсат греющего пара поступает в конденсатор. Затем основной конденсат проходит через сальниковый подогреватель, где подогревается за счет теплоты пара из концевых уплотнений, а греющий пар после охлаждения и конденсаций поступает в конденсатор. Пройдя сальниковый подогреватель конденсат нагревается в группе подогревателей низкого давления ПНД2, ПНД3 и ПНД4. В этих регенеративных подогревателях применяется каскадный слив дренажа греющего пара, а между ПНД2 и ПНД3 также используют принудительный слив дренажа греющего пара.

В линию основного конденсата между ПНД2 и ПНД3, а также между ПНД3 и ПНД4 вводится конденсат греющего пара из сетевых подогревателей ПСГ1 и ПСГ2.

Основной конденсат, пройдя группу подогревателей низкого давления, поступает в деаэратор, также в деаэратор поступает возвратный конденсат производственного отбора пара, конденсат греющего пара из ПВД5, а также пар отсосов от штоков клапанов. В деаэраторе осуществляется термическая деаэрация основного конденсата, который после деаэратора называется питательной водой. Питательным насосом, имеющим электропривод, питательная вода подается в группу подогревателей высокого давления. В ПВД применяется каскадный слив дренажа греющего пара. После ПВД питательная вода поступает в паровой котел.

Турбина ПТ-80-130 имеет сетевую установку состоящую из подогревателей ПСГ1, ПСГ2, сетевые насосы 1 и 2 ступени и пиковый водогрейный котел.


2.2 Расчет принципиальной тепловой схемы на заданный режим

2.2.1 Исходные данные для расчета


  1. Вид топлива: газ-мазут;

  2. Тип технического водоснабжения: оборотное с градирнями;

  3. Начальные параметры пара: МПа

С

  1. Параметры питательной воды: МПа

С

  1. Давление пара в отборах турбины (МПа):


4,02,351,250,20,150,080,040,0030,59

  1. Расход пара в отборах турбины (т/ч):


26321028107418

  1. Температура сырой воды: С

  2. Температурный график теплосети: 150 С – 70 С

  3. КПД цилиндров турбины: η = 0,83

η = 0,85

η = 0,7

  1. Тепловая нагрузка потребителей:

по горячей воде 12 МВт

48 МВт

0 МВт

по пару 80 т/ч

  1. Коэффициент теплофикации: α = 0,5


2.2.2 Расчет теплофикационной установки блока с турбоустановкой ПТ-80-130


2.2.2.1 Суммарная нагрузка по горячей воде:

(МВт) (2.2.2.1)

12 + 48 + 0 = 60 (МВт)

2.2.2.2 Максимальная нагрузка по горячей воде (отопительная):

/α (МВт) (2.2.2.2)

60/0,5 = 120 (МВт)

2.2.2.3 Расход сетевой воды:

= ( 3600.)/( ) (т/ч) (2.2.2.3)

где = 4,19 кДж/кг – теплоемкость воды.

= (3600.120)/4,19.(150 - 70) = 1288,78 (т/ч)

2.2.2.4 Утечка воды в тепловых сетях: принимается в размере 0,5 %

от , т.е.

= 0,005. (т/ч) (2.2.2.4)

= 0,005.1288,78 = 6,44 (т/ч)

2.2.2.5 Расход воды на горячее водоснабжение:

= 3,6./10..( ) (т/ч) (2.2.2.5)

где принимается на 5 С ниже чем :

= 65 С

= 3,6.12/10.4,19.(65 - 5) = 171,84 (т/ч)

2.2.2.6 Расход подпиточной воды:

= + (т/ч) (2.2.2.6)

= 171,84 + 6,44 = 178,28 (т/ч)

2.2.2.7 Температура подпиточной воды: определяется по давлению

пара в вакуумном деаэраторе = 40 С

2.2.2.8 Теплота с утечкой:

= 10... ( )/3,6 (МВт) (2.2.2.7)

где = ( )/2 (С) (2.2.2.8)

= (150 + 70)/2 = 110 (С)

= 10.6,44.4,19(110 – 5)/3,6 = 0,79 (МВт)

2.2.2.9 Тепло вносимое с подпиточной водой:

= 10... ( )/3,6 (МВт) (2.2.2.9)

= 10.178,28.4,19(40 – 5)/3,6 = 7,26 (МВт)

2.2.2.10 Тепловая нагрузка сетевой подогревательной установки:

(МВт) (2.2.2.10)

120 + 0,79 – 7,26 = 113,53 (МВт)

2.2.2.11 Теплофикационная нагрузка пиковых водогрейных котлов:

(МВт) (2.2.2.11)

113,53 – 0 – 48 = 65,53 (МВт)

2.2.2.12 Расход пара на основные сетевые подогреватели:

  1. Расход пара на верхний сетевой подогреватель

= 0 (т/ч) (2.2.2.12)

  1. Расход на нижний сетевой подогреватель

= 3600()/().η (т/ч) (2.2.2.13)

= 3600(48 + 12)/(2666 – 391,72) .0,98 = 96,91 (т/ч)

2.2.2.13 Расход пара на деаэратор подпитки теплосети:

= .. ()/(.).η (т/ч) (2.2.2.14)

где = 28 С – температура химочищенной воды;

η = 0,98 – к.п.д. теплосети.

= 178,28.4,19(40 – 28)/(2636,8 – 4,19.28).0,98 = 3,63 (т/ч)

2.2.2.14 Расход химочищенной воды на подпитку теплосети:

= - (т/ч) (2.2.2.15)

= 178,28 – 3,63 = 174,65 (т/ч)


2.2.3 Определение параметров пара и воды в регенеративных установках принципиальной тепловой схемы


2.2.3.1 Нарисовать регенеративную часть высокого давления (рис2.2).

2.2.3.2 Температура насыщения пара в отборах (определяется по термодинамическим таблицам воды и водяного пара по давлению пара в отборах):

= 4 МПа = 250,33 С

= 2,35 МПа = 220,67 С

= 1,25 МПа = 189,81 С

2.2.3.3 Температура питательной воды:

за ПВД1 = - θ = 250,33 – 4 = 246,33 С (2.2.3.1)

за ПВД2 = - θ = 220,67 – 4 = 216,67 С (2.2.3.2)

за ПВД3 = - θ = 189,81 – 4 = 185,81 С (2.2.3.3)

где θ (С) – величина недогрева до температуры насыщения греющего пара. Для группы подогревателей высокого давления θ = 3 – 5 С

2.2.3.4 Нарисовать регенеративную часть низкого давления (рис.2.3).

2.2.3.5 Температура насыщения пара в отборах (определяется по термодинамическим таблицам воды и водяного пара по давлению в отборах):

= 0,2 МПа = 120,23 С

= 0,15 МПа = 111,37 С

= 0,08 МПа = 93,51 С

= 0,04 МПа = 75,89 С

2.2.3.6 Температура конденсата:

за ПНД4 = - θ = 120,23 – 7 = 113,23 С (2.2.3.4)

за ПНД5 = - θ = 111,37 – 7 = 104,37 С (2.2.3.5)

за ПНД6 = - θ = 93,51 – 7 = 86,51 С (2.2.3.6)

за ПНД7 = - θ = 75,89 – 7 = 68,89 С (2.2.3.7)

где θ (С) - величина недогрева до температуры насыщения греющего пара. Для группы подогревателей низкого давления θ = 5 – 10 С.


2.2.4 Построение процесса расширения пара в турбине


2.2.4.1 Относительный электрический КПД - η (определяется по заданию в зависимости от типа турбины):

η = η.η.η (%) (2.2.4.1)

η = 0,83.0,85.0,7 = 0,49 (%)

2.2.4.2 Относительный внутренний КПД - η:

η= η/ η.η (%) (2.2.4.2)

η= 0,49/0,98.0,99 = 0,51 (%)

2.2.4.3 Построить процесс расширения пара в турбине по i,диаграмме,(рис2.4).

= 13 (МПа)

= 540 (С)

= 3455 (кДж/кг)

= 0,9. (МПа) (2.2.4.3)

= 0,9.13 =11,7 (МПа)

= 3130 (кДж/кг)

(кДж/кг) (2.2.4.4)

= 3455 – (3455 – 3130) .0,83 = 3185,25 (кДж/кг)

= 3045 (кДж/кг)

(кДж/кг) (2.2.4.5)

= 3185,25 – (3185,25 – 3045).0,83 = 3068,84 (кДж/кг)

= 2915 (кДж/кг)

(кДж/кг) (2.2.4.6)

= 3068,84 – (3068,84 – 2915).0,83 = 2941,15 (кДж/кг)

= 0,9. (МПа) (2.2.4.7)

=0,9.1,25 = 1,125 (МПа)

= 2610 (кДж/кг)

(кДж/кг) (2.2.4.8)

= 2941,15 – (2941,15 – 2610).0,85 = 2659,67 (кДж/кг)

= 2609 (кДж/кг)

(кДж/кг) (2.2.4.9)

= 2659,67 – (2659,67 – 2609).0,85 = 2616,6 (кДж/кг)

= 2520 (кДж/кг)

(кДж/кг) (2.2.4.10)

= 2616,6 – (2616,6 – 2520).0,85 = 2534,49 (кДж/кг)

= 2435 (кДж/кг)

(кДж/кг) (2.2.4.11)

= 2534,49 – (2534,49 – 2435).0,7 = 2464,85 (кДж/кг)

= 2130 (кДж/кг)

(кДж/кг) (2.2.4.12)

= 2464,85 – (2464,85 – 2130).0,7 = 2230,46 (кДж/кг)

2.2.4.4 Определить располагаемый теплоперепад:

= - (кДж/кг) (2.2.4.13)

= 3455 – 2915 = 540 (кДж/кг)

= - (кДж/кг) (2.2.4.14)

= 2915 – 2520 = 395 (кДж/кг)

= - (кДж/кг) (2.2.4.15)

= 2520 – 2130 = 390 (кДж/кг)

2.2.4.5 Определить полезноиспользуемый теплоперепад:

= - (кДж/кг) (2.2.4.16)

= 3455 – 2941,15 = 513,85 (кДж/кг)

= - (кДж/кг) (2.2.4.17)

= 2941,15 – 2534,49 = 406,6 (кДж/кг)

= - (кДж/кг) (2.2.4.18)

= 2534,49 – 2230,46 = 304,03 (кДж/кг)

2.2.4.6 Определить полный полезноиспользуемый теплоперепад:

= + + (кДж/кг) (2.2.4.19)

= 513,85 + 406,66 + 304,03 = 1224,54 (кДж/кг)


2.2.5 Материальный тепловой баланс пара и питательной воды


2.2.5.1 Материальный тепловой баланс по пару:

α = 1 + α + α + α (2.2.5.1)

α = 1 + 0,01 + 0,01 + 0,004 = 1,024

2.2.5.2 Материальный баланс по питательной воде:

α = α + α (2.2.5.2)

где α = 0,01

α = 1,024 + 0,01 = 1,034


2.2.6 Сводная таблица параметров пара и воды



Размерность1234567ДК

МПа4,02,351,250,20,150,080,040,590,003

кДж/кг3185,33068,82941,22659,72616,62534,52464,92755,52230,5

С

250,33220,67189,81120,23111,3793,5175,89

С

246,33216,67185,81





С




113,23104,3786,5168,89

т/ч26321028167418171,83

2.2.7 Расчет коэффициентов недовыработки пара в отборах турбины


2.2.7.1 Коэффициент недовыработки пара в отборах для турбины без промперегрева:

= ()/() (2.2.7.1)

= (3185,25 – 2230,46)/(3455 – 2230,46) = 0,78

= ()/() (2.2.7.2)

= (3068,84 – 2230,46)/(3455 – 2230,46) = 0,68

= ()/() (2.2.7.3)

= (2941,15 – 2230,46)/(3455 – 2230,46) = 0,58

= ()/() (2.2.7.4)

= (2656,67 – 2230,46)/(3455 – 2230,46) = 0,35

= ()/() (2.2.7.5)

= (2616,6 – 2230,46)/(3455 – 2230,46) = 0,32

= ()/() (2.2.7.6)

= (2534,49 – 2230,46)/(3455 – 2230,46) = 0,25

= ()/() (2.2.7.7)

= (2464,85 – 2230,46)/(3455 – 2230,46) = 0,19


2.2.8 Определение расходов пара на турбину и абсолютных расходов пара и воды


2.2.8.1 Расход пара на турбину (при расчете необходимо учесть расход пара на сетевые подогреватели с коэффициентом недовыработки пара):

= 3600/(.η.η) + + (т/ч) (2.2.8.1)

где - коэффициент недовыработки пара соответствующего отбора;

= + + (+ + ) +…+ (2.2.8.2) =0,78.26+0,68.32+0,58.(10+18+80)+0,35.28+0,32.10+0,25.7+0,19.

.4 = 120,19

= 3600.80/(1224,54.0,98.0,99) + 120,19 + 0,25.96,91 = 386,83 (т/ч)

2.2.8.2 Расход перегретого пара котлов:

= α. (т/ч) (2.2.8.3)

= 1,024.386,83 = 396,11 (т/ч)

2.2.8.3 Расход питательной воды:

= α. (т/ч) (2.2.8.4)

= 1,034.386,83 = 399,98 (т/ч)

2.2.8.4 Расход добавочной воды:

= α. (т/ч) (2.2.8.5)

= 0,02.386,83 = 7,74 (т/ч)


2.2.9 Энергетические показатели турбоустановки и ТЭС


2.2.9.1 Полный расход тепла на турбоустановку:

= ( - ).10 (МВт) (2.2.9.1)

= (3455 – 920,6) .10 = 272,33 (МВт)

2.2.9.2 Расход тепла на производство:

= .10 (МВт) (2.2.9.2) где - энтальпия пара производственного отбора;

- энтальпия конденсата производственного отбора;

= 0,3. (т/ч) (2.2.9.3)

= 0,3.80 = 24 (т/ч)


= = 59,98 (МВт)

2.2.9.3 Расход тепла на турбоустановку для производства электроэнергии:

= - (МВт) (2.2.9.4)

где = + (МВт) (2.2.9.5)

= 60 + 59,98 = 119,98 (МВт)

= 272,33 – 119,98 = 152,35 (МВт)


3 ВЫБОР ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯТЕПЛОВОЙ СХЕМЫ БЛОКА

3.1 Выбор регенеративных подогревателей


Производительность и число регенеративных подогревателей для основного конденсата определяются числом имеющихся у турбин для эти целей отборов пара. При этом каждому отбору пара должен соответствовать один корпус подогревателя.

Регенеративные подогреватели низкого давления, как правило принимаются смешивающего типа число их определяется технико -экономическим обоснованием.

Регенеративные подогреватели устанавливаются без резерва.

Подогреватели поверхностного типа поставляются в комплекте с турбиной. С турбоустановкой ПТ-80-130 устанавливаются подогреватели следующего типа:

ПН-130-16-10-2 – 4 шт. с техническими характеристиками: площадь поверхности теплообмена 130 м, номинальный массовый расход воды – 63,9 кг/с, расчетный тепловой поток – 7,3 МВт, максимальная температура пара – 400, гидравлическое сопротивление при номинальном расходе воды – 0,09 МПа, высота – 4680 мм, диаметр корпуса – 1020 мм.

Актуально: