Способ определения живучести связи (вероятности связности)

СПОСОБ ОПРЕДЕЛЕНИЯ ЖИВУЧЕСТИ.

Определению живучести связи (вероятности связности) между двумя конкретными узлами сети i и j посвящен целый ряд работ (1-5). Однако расчет точного ее назначения сопряжен с большими вычислительными трудностями. Представляет интерес найти простой способ определения вероятности связности сети, который позволял бы оперативно и вручную проводить на стадии проектирования оценку различных вариантов их построения.

Рассмотрим сеть той же мостиковой структуры, что и в (1) (рис.1). Для простоты будем полагать вероятности исправного функционирования всех ребер сети одинаковыми и равными р , а неисправного функционирования - равными q=1-. Для оценки живучести воспользуемся методом прямого перебора состояний элементов сети связи (5). На основании биноминального закона вероятность пребывания сети связи в состоянии, когда i любых ребер сети отказали,, где - биноминальный коэффициент; N – число ребер сети.

Например, для сети, изображенной на рис. 1, живучесть связи р13 зависит от следующей


совокупности независимых событий: исправного состояния сети в целом – вероятность этого события равна р3; повреждения любого одного ребра сети – вероятность одновременного повреждения любых двух ребер сети, за исключением двух случаев, когда оба ребра подходят к узлу 1 или к узлу 3 – вероятность одновременного повреждения трех ребер сети, подходящих к узлу 2 или 4 – вероятность 2р2q3.

Суммируя все вероятности независимых событий, получаем искомое выражение :

что полностью совпадает полученными результатами в (1).

Аналагично для всех остальных пар узлов сети рис. № 1.

Из анализа видно, что

Связанной сетью являются сеть, в которой любой из узлов соединен с остальными узлами сети. Вероятность связанности сети рис. № 1

так как эта сеть допускает все одиночные повреждения ребер и восемь двойных повреждений ребер. Вероятность связности сети меньше или равна живучести связи между любой парой узлов сети, в данном случае рс13.

С точки зрения характеристики сети интерес представляют вероятность рс, минимальная рмин и максимальная рмакс живучести связи между любой парой узлов сети и соотношения между ними. Для сети рис №1: рс< рмин=р13< р12=р14=р23=р34< р24макс.

Аналогично можно найти выражения для вероятности связности полносвязных сетей. Для сети с тремя вершинами (n=3)

(1)

для n=4;

(2)

для n=5;

(3)

для n=6;

(4)

Для рс при n=7….10 расчетные формулы не приводятся из-за громоздкости.

Вероятность связности для кольцевых сетей связи, т.е. сетей, у которых степень для каждой вершины равна 2 (степенью вершины d называются число граней графа сети, инцидентных данной вершине (6)),

На рис 2 определена зависимость рс от р для кольцевых сетей при различных n. Из ее анализа видно, что вероятность связности кольцевых сетей падает с увеличением числа узлов сети при одних и тех же значениях р.


Рис № 2.


На практике довольно редко встречаются полносвязные сети. Обычно бывают сети с небольшими степенями вершин. Имеется большое семейство графов (так называемых равнопрочных) , в которых степень вершины d, число вершин n и общее число граней m связаны следующим соотношением: d=2m/n (при n>2).

Например для шестиугольника (n=6) без резервирования связей можно построить четыре различных графа с d=2, 3, 4, 5. Вероятности связности этих графов определяется следующими выражениями:

При d=2 (рис. 3,а)

(5)

при d=3 (рис. 3,б)

(6)

при d=4 (рис. 3,в)

(7)

При n=8 можно построить шесть различных графов с d=2…..7; вероятность связности этих графов определится следующими выражениями:

d=2 (рис. 4,а)

(8)

d=3 (рис. 4,б)

(9)

d=4 (рис. 4,в)

(10)


Расчетные формулы для рс при d=5 и 6 из-за громоздкости не приводятся.

На рис 5 и 6 представлены зависимости вероятности связности сети с n=6, 8 соответственно при различных d (сплошные линии), построенные по формулам (5) – (10). Из рисунков видно, что увеличение вероятности связности сети с увеличением d при неизменном p объясняется тем , что с увеличением d возрастает разветвленность сети связи.

К сожалению, ловольно трудно получить аналитическое выражение для вероятности связности сети рассматренного семейство графов при различных d и n, за исключением полносвязных сетей с d = n – 1 (см.выражение (1) – (4)). По этому целесобразно определять верхнюю груницу вероятности связности графов. Если граф связный, то в нем не может быть изолированных вершин. В этом случае каждой вершине должна быть инцидента по крайней мере одна ветвь.

Пусть Ai – событие, когда не существует неповрежденных ветвей, инцидентных вершине i, p(Ai) – вероятность этого события; 1 – p(Ai) – вероятность дополнительного события, когда существует по крайней мере одна целая ветвь, инцидентная вершине i, Поэтому вероятность того, что у всех вершин есть по крайне мере одна целая ветвь, т.е. есть связана, ограничена неравенством:

(11)

На рис. 5,6 представлены зависимости (11) для n=6, и d=2…..7 (штриховые линии). Сравнение кривых показывает, что верхнюю границу вероятности связности сети, особенно при больших d.

Таким образом, полученная простая верхняя оценка вероятности связности равнопрочных сетей связи дает шорошее приближение к точному значению вероятности связности сети при больших значениях d.

Подобные работы:

Актуально: