Научные основы школьного курса химии. методика изучения растворов

У любой науке, в том числе и химии свои законы, теории, свой накоп­ленный опыт, который усваивают многие поколения школьников. То есть наука – это главным образом сокровищница накопленных знаний, и обучение, в об­щем, и целом можно рассматривать как процесс переноса научных знаний из учебника в голову ученика. Но в тоже время, накопленные знания – это продукт духовной деятельности, органично включающий в себя нечто живое человече­ское и, следовательно, не могут быть отделимы от человека. Поэтому перенос научных знаний из учебника или головы учителя в головы учеников нельзя осуществлять механически, игнорируя познавательную активность учащегося.

Любые научные знания – это всегда результат нелегкого поиска ответов на возникшие вопросы и проблемы, выдвижения гипотез и смелых теорий; точ­нейшие эксперименты, завершающиеся выводами.

На современном этапе к основной задаче обучения следует отнести дей­ствительное, истинное освоение учебного материала, что возможно лишь при творческом его восприятии, а не зубрежке, вызывающей отвращение к учебе.

Чтобы решить эту проблему, необходимо использовать современные ме­тодики обучения, развивающие обучение и научить школьников «учить творче­ски».

Сегодня учитель вправе самостоятельно выбирать содержание, организа­ционные формы и методы обучения. В его распоряжении альтернативные кон­цепции химического образования, вариативные программы и учебники, в ос­нове которых, прежде всего, лежит химический эксперимент, без которого невоз­можно успешное изучение химии.

Настоящая дипломная работа посвящена некоторым вопросам научных основ преподавания химии и использованию проблемного метода обучения в химическом эксперименте.


Глава 1. Научные основы преподавания химии.


Часть 1. Формирование химического языка при обучении химии.

Как в химической науке, так и в химическом образовании невозможно общение, обучение и передача химической информации без использования химического языка.

Химический язык включает три важных раздела: символику, терминологию и номенклатуру, с помощью которых обучаемый познает, обучается и передает свои мысли.

Терминология была введена в химию известным французским ученым А.Л. Лавуазье. Терминология – это совокупность терминов, употребляемых в какой- либо области науки. В химии она имеет очень большое значение и знакомство с ней осуществляется в школьном курсе химии уже в первой главе учебника 8 го класса (1,2,3). Например, термины: отстаивание, декантация, фильтрование, фильтрат, центрифугирование, выпаривание, дистилляция и т.д.

В этой же главе закладываются основы второй составной части языка – символики, основоположником которой является Я. Берцелиус. Символика – это система условных знаков науки, условно обозначающие объекты, явления, закономерности химии. Обзорно раскрывающие их существенные признаки, связи, отношения и придающие им качественную характеристику.

Благодаря символике химический язык приобрел ряд достоинств: краткость, однозначность, точность, большие эвристические возможности. Он стал активным средством познания химии, описания его результатов, выражения наиболее важных и характерных признаков и объективных связей в химии (4).

Появление языка химических знаков, формул и уравнений вызвано внедрением в химию атомистики, которая с помощью химического языка позволяет регистрировать и закреплять результаты познания состава, структуры и химических превращений веществ.

Школьный химический язык – это язык химии, дидактически переработанный в соответствии с целями и содержанием обучения, с учетом возрастных особенностей учащихся и психологических основ его переработки (4).

Он направлен на освоение курса химии средней школы, на развитие и воспитание учащихся.

Менделеев писал, говоря о химическом языке, что «химические формулы говорят химику целую историю вещества», что химические знаки, формулы, уравнения – это «международный язык, придающий химии, кроме точности понимания, простоту и ясность, основанные на исследовании законов природы» (5).

Составление методики формирования химического языка в школе, связано с именами таких ученых, как Г.И. Гесс, Д.И. Менделеев, А.М. Бутлеров. Дальнейшее его развитие осуществлено В.Н. Верховским, Л.М. Сморгонским, С.Г. Шаковаленко, Д.М. Кирюшкиным и современными учеными.

Учитель в своей практике должен уделять особое внимание формированию химического языка. Если химический язык освоен школьниками, то химия не будет представлять для них сложности. Если не освоен, то предмет будет трудным. Поэтому формированию химического языка следует уделять особое внимание.

Рассмотрим, какие требования должны предъявляться к овладению учащимися химическим языком:

1. Усвоение качественного и количественного значения химических знаков элементов и умение правильно применять их.

2. Усвоение качественного и количественного значения химических формул, приобретение умения составлять формулы веществ по валентности, образующих их элементов. Формирование умения читать формулы, проговаривать их на слух, и применять их при истолковании состава веществ и химических процессов с точки зрения теории строения вещества. Умение производить по формулам простейшие расчеты.

3. Составление ионных и простейших электронных формул, чтение и понимание их.

4. Составление структурных формул органических и некоторых неорганических веществ, чтение и понимание их. Применение структурных формул при изложении вопросов о составе, получении и химических свойствах вещества.

5. Усвоение качественного и количественного значения уравнений химических реакций, умение составлять и читать их, производить стехиометрические расчеты.

Основу химического языка составляет терминология, введенная в науку французским ученым А. Лавуазье. Термины вводятся, формируются и развиваются на протяжении всего школьного курса. Для успешного усвоения терминологии целесообразно учить школьников умению работать с терминами, использовать составленный ими в процессе обучения терминологический словарь. Школьники должны знать значение и смысл химических и научных терминов; уметь связывать их с основными химическими понятиями, раскрывать этимологическое и смысловое значение термина, уметь его проанализировать.

Наряду с этим, школьника следует учить произношению и записи термина, раскрывать содержание термина; заменять, при необходимости, его другим, близким по смыслу и значению ( например: «сублимация» – «возгонка» ); осуществлять анализ и взаимопереходы между терминами и символами.

Как было отмечено выше, основоположником символики является

Я. Берцелиус. Символика – это наиболее специфическая часть языка химии, это система условных знаков науки, которые обобщенно, условно обозначают объекты, явления, закономерности химии, раскрывают их существенные признаки, связи, отношения, дают им качественную и количественную характеристику. Символика включает химические знаки элементов, химические формулы и химические уравнения.

Химический знак – это не только краткое название атома, но и обозначение относительной атомной массы, а следовательно и молярной массы. Химический знак имеет и качественное и количественное значение.

Рассмотрим, какие знания сообщаются школьнику о химическом знаке: исторические сведения о создании химической символики, названия и обозначения знаков, их значения и смысл.

После изучения знаков школьники должны уметь произносить, записывать и использовать знаки; осуществлять переходы от названия к знаку и обратно.

После изучения химических знаков наступает этап формирования знаний о химических формулах, являющихся отображением молекулы вещества; весовых отношений элементов вещества; указывает из каких элементов состоит вещество; сколько атомов каждого элемента входит в состав молекулы и каково их количественное отношение.

При изучении химических формул следует раскрыть их значение в химическом познании. Показать виды химических формул (эмпирические, электронные, ионные, структурные, проекционные и т.д.), их смысл, качественное и количественное выражение формулы, связь с законом постоянства состава, правила составления формул.

Школьники должны уметь составлять, читать, анализировать формулы. Определять по ним валентность и степень окисления элементов, прогнозировать реакционную способность химических связей и соединений. Устанавливать закономерность между составом и свойством вещества, его составом и строением, производить расчеты, использовать общие формулы водородных и кислородных соединений, их классов и гомологических рядов для обобщения и систематизации знаний.

Изучению химических знаков и химических формул учитель должен уделить особое внимание, так как знания о них являются ключом для успешного усвоения химических уравнений. Известно, что наибольшее число фактических ошибок, школьники допускают при составлении химических уравнений.

Химические уравнения показывают, какие молекулы вступили в реакцию и какие новые молекулы (вещества) получились в результате реакции, в каком весовом отношении реагировали молекулы и в каком весовом отношении образовались новые молекулы (вещества). Химические уравнения показывают сущность химической реакции с точки зрения атомно-молекулярной теории.

Химические уравнения показывают, что изменение состава молекул исходных веществ и образование молекул нового состава, при химической реакции, явилось следствием движения атомов, их взаимной перегруппировки в молекулах.

Наряду с этим следует показать, что химические уравнения имеют «качественное и количественное» содержание. По ним можно производить разнообразные вычисления.

При изучении химических уравнений учитель раскрывает учащимся значение уравнений в познании химии, виды уравнений, их смысл и связь с законом сохранения массы веществ, отражение в них качественной стороны реакций и количественных отношений, способы составления различных уравнений и расчетов по ним. При этом формируются следующие умения: составлять, читать, анализировать, толковать уравнения, раскрывать смысл коэффициентов, определять по уравнению тип реакции и давать ее описание. Производить расчеты по уравнениям реакций и осуществлять переходы от одного вида уравнения к другому.

Терминологию и символику дополняет химическая номенклатура. При ее изучении следует раскрыть ее значение в познании, показать виды номенклатурных систем в обучении, раскрыть роль номинальных названий в познании химии, соотношения между номенклатурной терминологией и символикой. Следует научить школьников читать, произносить, истолковывать названия ионов, веществ неорганического и органического происхождения. Извлекать из названий информацию о классе соединений, о конкретных веществах, их качественном составе и характере, составлять названия веществ по международной номенклатуре, осуществлять переход от названия вещества и наоборот. Соотносить международные, русские и тривиальные названия, составлять рациональные и систематические названия изомеров по формулам органических соединений и наоборот. Использовать номенклатуру при описании и объяснении веществ (4).

Химическая номенклатура, как и химический язык в целом, являются средством и методом передачи учителем и усвоения учащимися химических знаний. С их помощью регистрируются и закрепляются химические знания о качественном и количественном составе веществ, строении молекул и т.д. Химические знаки, формулы и уравнения используются при наблюдении химических реакций, их анализе и объяснении.

Химический язык и номенклатура являются средством и методом применения добытых знаний на практике; решения количественных, экспериментальных и других задач. В процессе обучения химический язык и номенклатура выступают как средство, с помощью которого ученики осмысливают химические процессы, предвидят новые химические факты, планируют практические действия и выполняют их. Пользуясь химическими знаниями и химическим языком, школьники могут находить путь получения вещества, демонстрируя при этом способность, разобраться в конкретной ситуации, предвидеть химические факты и планировать практические действия.

Наряду с этим, химический язык и номенклатура являются средством учета знаний учащихся и изучения развития их мышления.

С помощью химического языка и номенклатуры, учащиеся излагают свои знания о составе, химических свойствах и применении веществ, объясняют реакции с точки зрения теории строения вещества. В процессе обучения химии, должен быть достигнут свободный переход учащихся от химического языка к химическим терминам, общенаучным словам и предложениям, от них к самостоятельной постановке эксперимента, т.е. к практическим действиям.

Таким образом, роль химического языка в овладении школьниками химическими знаниями, умением и навыками чрезвычайно велика. В процессе последовательного овладения предметом, химический язык совершенствуется в тесной связи с развитием теоретических знаний, с накоплением химических фактов и усложнением химических понятий.

Для успешного формирования химического языка необходимо внедрять в школьную практику проблемные и игровые ситуации, элементы занимательности и исторические сведения, а главное дидактические средства обучения, в частности – фланеле, магнитографию и химический эксперимент.

Примеры практических заданий по формированию химического языка.

1. Проанализируйте содержание первой главы учебника (1), выпишите новые химические понятия и дайте им определения.

2. Из главы «Первоначальные химические понятия» (1), выпишите предлагаемые в ней символы химических элементов и дайте им названия.

3. В терминологический словарь выпишите формируемые в главе I (1) термины, дайте им характеристику.

4. Из перечисленных химических знаков выписать символы элементов, относящихся к металлам и дать им названия:

К, Н, Na, O, Cu, N, Fe, S, Ln.

5. Из перечисленных химических знаков элементов выписать символы элементов – неметаллов и назвать их:

C, Mg, Br, Ag, Cu, P, Al.

6. По названию химического элемента напишите его химический символ:

Никель, Фосфор, Кальций, Литий, Гелий, Магний, Хлор, Барий, Углерод.

7. Какова количественная характеристика элементов:

Кислород, Калий, Сера, Углерод, Фтор, Барий, Фосфор ?

8. Расшифруйте, что означает следующая запись:

4H, 4H2, H2, O, 5O, O2, 5O2 ?

9. Напишите: пять атомов азота; пять молекул азота; три атома хлора; пять молекул хлора.

Работа с химической формулой.

I. Качественная характеристика.

Рассмотрим на примере оксида фосфора (V).

1. Эмпирическая формула - P2O5

2. Вещество состоит из элементов: фосфора и кислорода.

3. Относится к классу оксидов, так как отвечает определению оксидов:

Оксиды – это сложные вещества, состоящие из двух элементов, один из которых кислород, проявляющий степень окисления – 2.

4. Данный оксид относится к классу кислотных оксидов, так как ему соответствует ортофосфорная кислота:

P2O5 - H3PO4

II. Количественная характеристика.

1. Молекула P2O5 состоит из двух атомов фосфора и пяти атомов кислорода.

2. Определим относительную молекулярную массу оксида:

Mr(P2O5) = 2Ar(P) + 5Ar(O) = 2.31 + 5.16 = 142

3. Молярная масса оксида фосфора (V)

M(P2O5) = 142 г/моль.

4. Определим массовые доли элементов в P2O5, используя следующую формулу:

n . Ar(Э)

W(Э) = ¾¾¾¾¾¾¾ , где

Mr (вещества)

W – массовая доля элемента

n - число атомов элемента

Ar – относительная атомная масса элемента

Мr – относительная молекулярная масса вещества.

а) определим относительную молекулярную массу вещества (см. выше)

Mr(P2O5) = 142

б) расчет массовой доли фосфора:

n(P) × Ar(P) 2 × 31

W(P) = ¾¾¾¾¾¾ ; W(P) = ¾¾¾ = 0,4366 или (в долях единицы) 43,66 %

Mr(P2O5) 142

в) расчет массовой доли кислорода:

n(O) × Ar(O) 5×16

W(O) = ¾¾¾¾¾¾¾ ; W(O) = ¾¾¾ = 0,5634 или 56,34 %

Mr(P2O5) 142

W(O) можно определить и следующим образом :

W(O) = 100% - W(P) = 100% - 43,66% = 56,34%

5. Определение отношения моль атомов элементов по формуле P2O5

n(P) = 2 ; n(O) = 5; n(P):n(O) = 2:5 .

6. Определение отношения масс элементов:

P2O5 m(P) = 2×31 = 62 ; m(O) = 5 ×16 = 80 ; m(P):m(O) = 62:80 , сократим на 2

m(P):m(O) = 31:40 .

7. Определение валентности элементов по формуле P2O5

а) наименьшее общее кратное символов элементов, которые делятся на 2 и 5

равно 10.

б) число 10 делим на величину индекса каждого элемента и получаем значение валентности элемента.

V II

P2O5 ® P2O5

10

наименьшее общее

кратное

8. На ряду с этим, по валентности можно составить формулу вещества. Например, в оксиде фосфора валентность фосфора равна трем, а кислорода двум.

III II

P O

Находим наименьшее общее кратное – число, которое делиться на 3 и 2 – число 6. Это число (6) делим на соответствующие элементам значения валентностей и получаем соответствующие элементам индексы:

для фосфора 6:3 = 2;

для кислорода 6:2 = 3

и составляем формулу вещества: P2O3 .

Приведем примеры задач на расчет по формуле:

№1. Соединение некоторого элемента имеет формулу Э3О4 , а массовая доля элемента в нем 72,4%. Установите элемент (6).

Методика решения:


Дано: 1. Выразим массовую долю элемента:

Э3О4 n(Э) × Ar(Э)

W(Э)= 72,4%, W(Э) = ¾¾¾¾¾¾ ;

или 0,724 Mr(Э3О4)

Э - ? 2. Примем Ar(Э) = X, тогда

Mr(Э3О4) = 3X + 4×16 = 3X + 64 .

3. Подставим принятые обозначения в формулу

3× X

0,724 = ¾¾¾¾ ; находим Х

3×X + 64

2,172 × Х + 46,34 = 3 × Х ; 0,828 × X = 46,34 ; X= 56.

Следовательно, Ar(Э) = 56; Элемент – железо.

№2. В результате обжига на воздухе 8,0 г сульфида молибдена было получено 7,2 г оксида молибдена (VI). Установите формулу исходного сульфида молибдена (7).

Методика решения:


Дано: 1. По закону сохранения массы веществ

m(MoxSу) = 8,0 г m(Mo) до реакции = m(Mo) после реакции след-но

m(MoO3) = 7,2 г n(Mo) до реакции = n(Mo) после реакции

MoxSу - ? 2. Определим количество вещества оксида

молибдена (VI)

m 7,2 г

n(MoO3) = ¾¾ = ¾¾¾¾¾ = 0,05 моль

M 144 г/моль

3. Определим количество вещества и массу молибдена

n(Mo) = n(MoO3) = 0,05 моль; m(Mo) = 0,05 × 96 = 4,8 г

4. Найдем массу серы и количество вещества серы

m 3,2

m(S) = m(MoxSу) – m(Mo) = 8,0 – 4,8 = 3,2 г; n(S) = ¾¾ = ¾¾ = 0,10 моль

M 32

5. Найдем отношение количеств веществ молибдена и серы

n(Mo) : n(S) = 0,05:0,10 = 1:2

Следовательно, формула сульфида молибдена: MoS2

№3. Определить массу водорода в (г), содержащегося в 3,01 × 1024 молекул метана (8).

Методика решения:

Дано: Для решения задачи необходимо последовательно

СH4 использовать следующие формулы:

N(СH4) = 3,01 × 1024 N m

n = ¾¾ и n = ¾¾ ;

m(H) - ? NA M

1. Находим количество вещества метана и водорода:

N(СH4)

n(СH4) = ¾¾¾¾¾¾¾ ; где NA – постоянная Авогадро, равная 6,02 × 1023

NA структурных единиц.

3,01 × 1024

n(СH4) = ¾¾¾¾¾¾ = 5 моль

6,02 × 1023

n(H) = 4n (СH4) = 4 × 5 = 20 моль атомов водорода

2. Определим массу водорода в (г):

m(H) = n(H) × M(H) = 20 × 1 = 20 г.

№4. Какова молекулярная формула углеводорода, содержащего 82,5% углерода. Плотность паров по воздуху составляет 2 (9).

Методика решения:

Дано: 1. По относительной плотности паров по воздуху

W(C) = 82,5% расчитаем относительную молекулярную массу

Dвозд = 2 углеводорода СхНу

Mr(СхНу)

СхНу - ? Dвозд = ¾¾¾¾¾ ; Mr(возд) = 29

Mr(возд)

Mr(СхНу) = 29 × 2 = 58 .

2. Используя формулу расчета массовой доли элемента, определим число атомов углерода:

n(C) × Ar(C) X × 12

W(C) = ¾¾¾¾¾¾ ; n(C) = X ; 0,825 = ¾¾¾ ; X = 4; n(C) = 4

Mr(СхНу) 58

3. Определим массовую долю элемента водорода и число его атомов:

W(H) = 100% - W(C) = 100 – 82,5 = 17,5%

n(H) × Ar(H) Y × 1

W(H) = ¾¾¾¾¾¾ ; n(H) = Y ; 0,175 = ¾¾¾ ; Y = 10; n(H) = 10

Mr(СхНу) 58

Следовательно, формула углеводорода: С4H10 - бутан.

№5. Установите формулу кристаллогидрата MnCl2, если известно, что при его обезвоживании массовая доля сухого остатка составила 63,63% от массы кристаллогидрата (10).

Методика решения:

Дано: 1. Процесс обезвоживания кристаллогидрата

MnCl2 × Х H2O можно выразить следующей схемой:

W(MnCl2) = 63,63% t°

MnCl2 × Х H2O ® MnCl2 + Х H2O

MnCl2 × Х H2O - ?

Сухой остаток составит безводная соль MnCl2 , массовая доля которого 63,63%.

2. Выразим величину массовой доли сухого остатка:

Mr(MnCl2)

W(MnCl2) = ¾¾¾¾¾¾¾¾¾ ;

Mr(MnCl2 × Х H2O)

3. Рассчитаем относительные молекулярные массы безводной и водной солей:

Mr(MnCl2) = 55 + 2 × 35,5 = 126

Mr(MnCl2 × Х H2O) = 126 + 18X

4. Подставим, найденные величины в формулу массовой доли и определим значение Х:

126

0,6363 = ¾¾¾¾¾ ; 80,17 + 11,45 X = 126; 11,45 X = 45,83; X = 4 .

126 + 18 Х

Следовательно, формула кристаллогидрата: MnCl2× 4H2O


№6. Массовая доля серебра в соли предельной одноосновной органической кислоты составляет 70,59%. Написать молекулярную формулу кислоты, если известно, что она состоит из углерода, водорода и кислорода (11).

Методика решения:

Дано: Общая формула соли предельной одноосновной орга-

W(Ag) = 70,59% нической кислоты имеет следующий вид:


C n H2n+1 COOH - ? C n H2n+1 COOAg

1. Выразим массовую долю серебра в общем виде:

n(Ag) × Ar(Ag)

W(Ag) = ¾¾¾¾¾¾¾¾¾¾ ;

Mr(C n H2n+1 COOAg)

2. По формуле рассчитаем относительную молекулярную массу соли:

Mr(C n H2n+1 COOAg) = 12n + 2n + 1 +12 + 2 × 16 + 108 = 14n + 153 .

3. Сведем данные в формулу массовой доли:

1 × 108

0,7059 = ¾¾¾¾¾ ; 9,88n + 108 = 108; n=0

14n + 153

Следовательно: 14n – превращается в 0 и форму соли HCOOAg, а формула кислоты HCOOH .

Часть 2. Место эксперимента и его роль в развитии мышления

школьников.

Одним из важнейших словесно – наглядных и словесно – наглядно – практических методов обучения является химический эксперимент. Он играет особую роль в обучении химии. Химический эксперимент знакомит учащихся не только с самими явлениями, но и методами химической науки. Он помогает вызвать интерес к предмету, научить наблюдать процессы, освоить приемы работы, сформировать практические навыки и умения.

Следует отметить, что проблема химического эксперимента в методике обстоятельно исследована. Большой вклад в нее внесли такие ученые как В.Н. Верховский, В.В. Фельдт, К.Я. Парменов, В.В. Левченко, В.С. Полосин, Д.М. Кирюшкин, Л.А. Цветков и другие.

К.Я. Парменов(13) не только уделял внимание технике эксперимента, но и методике его включения в учебный процесс. Он отмечал, что при провидении

демонстрационного эксперимента необходимо подготовить учащихся к наблюдению опыта и умело руководить этими наблюдениями. Особенно детально разработана эта проблема В.С. Полосиным (14,15). Он исследовал эффективность различных способов приложения химического эксперимента, разработал методику комплексного использования химического эксперимента в сочетании с другими средствами обучения.

Химический эксперимент можно разделить на два вида: демонстрационный и ученический. Демонстрационный эксперимент относится к словесно – наглядным методам обучения.

Демонстрационным называют эксперимент, который проводится в классе учителем, лаборантом или иногда одним из учащихся (16).

Демонстрационный эксперимент, проводится в соответствии с государственной программой по химии для средней школы, по каждой конкретной изучаемой теме курса.

Демонстрационный эксперимент дает возможность учителю формировать интерес к предмету у школьников, научить их выполнять определенные операции с веществом; приемам лабораторной техники.

К требованиям, предъявляемым к демонстрационному эксперименту, следует отнести:

- Наглядность. Эксперимент следует проводить в цилиндрах, стаканах, чтобы химическое явление можно было наблюдать с любой точки класса. Стол преподавателя не должен быть загроможден лишними предметами, чтобы были видны руки учителя. Можно использовать подъемный столик или кодоскоп.

- Простота. Прибор, в котором демонстрируют эксперимент, не должен содержать лишних деталей и нагромождений, чтобы внимание обучаемых не отвлекалось от химического процесса. Не следует увлекаться эффектными опытами, так как менее эффектные опыты не будут пользоваться вниманием.

- Безопасность эксперимента. Учитель несет ответственность за безопасность учащихся, поэтому в кабинете должны находиться средства пожарной безопасности, вытяжной шкаф для проведения работ с вредными и пахучими веществами, средства для оказания первой помощи . реактивы для проведения опытов должны быть проверены заранее; посуда для эксперимента – чистой. При проведении опасных опытов следует использовать защитный экран.

- Надежность. Опыт всегда должен удаваться, и с этой целью техника эксперимента перед его проведением должна быть тщательно отработана, все операции должны быть четкими, уверенными; недопустима неряшливость в оформлении опыта. Учитель должен следить за своим внешним видом и поведением. В случае неудачи, необходимо выяснить ее причину, и опыт на следующем уроке повторить.

- Необходимость объяснения эксперимента. Любой опыт должен сопровождаться словом учителя. Возникающие паузы можно использовать для организации диалога со школьниками, выяснения условий проведения эксперимента и признаков химических реакций.

( условия – это то, что необходимо для того, чтобы реакция началась и протекала;

признаки – это то, по чему судят о том, что реакция протекает или уже закончилась ).

Следует помнить, что опыт – это метод исследования, поэтому лучше провести меньшее их количество, но каждый опыт должен быть объяснен.

Методика демонстрации опытов:

1. Необходима постановка цели опыта – для чего проводится опыт, что необходимо понять в результате наблюдений за экспериментом.

2. Следует описать прибор, в котором проводится опыт; условий, в которых он проводится; дать характеристику реактивам.

3. Организовать наблюдения за опытом учащихся для выявления признаков реакции и проведения анализа.

4. Помочь школьникам сделать соответствующие выводы и теоретическое обоснование.

Как любой учебный процесс, демонстрационный эксперимент решает три задачи: образовательную, воспитательную, развивающую, суть которых состоит в следующем:

Образовательная цель – получить информацию о протекании химической реакции, свойствах веществ и методах химической науки;

Воспитательная – сформировать убеждение, что опыт – инструмент познания, что мир познаваем.

Развивающая – развитие наблюдательности, умение анализировать явления, факты; делать обобщения и выводы.

В основе словесно – наглядно – практического метода лежит практическая деятельность учащихся, которая не может осуществляться без руководящего слова учителя и без использования элементов наглядности. Главный путь этого метода – самостоятельная работа школьников. Ее формы: коллективная, групповая и индивидуальная. Виды самостоятельной работы: ученический эксперимент, решение химических задач и упражнений, работа с литературой; выполнение творческих заданий; письменные работы контрольного характера и т.д..

Самостоятельная работа – это наиболее важный путь освоения учащимися новых знаний, умений и навыков в освоении методов химической науки.

Образовательная цель самостоятельной работы – освоение методов химической науки, экспериментальными умениями; умениями работать с учебником, литературой; производить расчеты; пользоваться химическим языком.

Воспитательная цель - формирование черт личности школьника, трудолюбия, настойчивости, товарищеской взаимопомощи.

Развивающая цель – развитие самостоятельности, интеллектуальных умений, умение анализировать явления и делать выводы.

Самостоятельная работа может быть источником знаний, способом их проверки, совершенствования и закрепления знаний, умений и навыков. Этот вид деятельности учащихся формируется под контролем учителя.

Как показано выше, ученический эксперимент – вид самостоятельной деятельности учащихся, запланированный в государственной программе по химии. Это способ проверки истинности, приобретенных знаний; способствующий более глубокому пониманию материала, усвоению знаний. Ученический эксперимент можно подразделить на лабораторные опыты и практические работы.

Лабораторные опыты проводятся школьниками во время объяснения учителем нового материала. Для этого ученические столы оснащаются необходимым оборудованием и реактивами. Учитель руководит выполнением эксперимента, оформлением отчета. Лабораторный опыт – источник знания, к нему предварительно школьники не готовятся. В тетрадях делается соответствующие записи.

Практические работы проводятся после изучения определенной темы или раздела. Это уроки контролирующие знания, умения и навыки. К ним готовятся заранее по инструкции, изложенной в учебнике. Перед допуском к выполнению практической работы учитель проводит инструктаж по технике безопасности и выполнению работы. Объясняются наиболее сложные моменты в работе. Работа выполняется в течении 45 минут, оценки выставляются каждому ученику. Отчет оформляется в специальных тетрадях, после проверки, проводится анализ.

Ученический эксперимент должен удовлетворять следующим требованиям (4 с.102-109):

1. Учащиеся должны понимать суть опыта и знать последовательность выполнения отдельных операций по инструкции.

2. Соблюдать дозировку реактивов и правила работы с ними.

3. Уметь собирать приборы по рисунку и правильно работать с ними.

4. Неукоснительно выполнять правила техники безопасности при обращении с оборудованием, приборами и реактивами.

5. Четко оформлять отчет о проведенной экспериментальной работе.

Выполняя химические работы, самостоятельно, или наблюдая за их демонстрационной постановкой ученики узнают о природе вещества, устанавливают взаимосвязи между ее строением и свойствами.

В настоящее время, совершенствование школьного химического эксперимента, в основном, заключается в модернизации приборов, аппаратов, создания оборудования для работы с малыми количествами и, к сожалению, в меньшей степени оно нацелено на разработку принципиально новых химических опытов, которые дали бы возможность применять на уроках проблемные и исследовательские формы организации учебной деятельности школьников.

Известно, что положительные результаты в развитии творческих способностей школьников возможны при систематическом применении в обучении проблемного и исследовательского подходов. Однако методически это трудная задача, решать которую необходимо.

Детальная разработка методики проведения проблемного эксперимента поможет учителю в организации мыслительной деятельности учащихся.

Широко используемый объяснительно – иллюстративный метод обучения, не дает возможности учителю добиться прочного усвоения учениками знаний и умений. Проникающее в современную школу развивающее обучение, направлено на создание учителем проблемных ситуаций и самостоятельное овладение учениками новыми знаниями, поэтому меняется и роль учителя. Если раньше он выполнял в основном роль информатора знаний, то в настоящее время он должен управлять процессом обучения.

В проблемном обучении (развивающем обучении) все учащиеся включаются в процесс решения проблем. Проблемные ситуации должны организовываться систематически, что способствует развитию логического мышления учащихся, их творческих способностей, интересам к учению.

Классификация проблемных ситуаций приводится в книге Малафеева Р.И. (17):

- неожиданность

- конфликт

- предположение

- опровержение

- несоответствия

- неопределенности.

Все эти ситуации, на наш взгляд, можно выразить как возникшие у

школьников противоречия, с имеющимися знаниями, которые следует разрешать выдвижением гипотезы и ее решением.

Выполняя проблемные задания, ученик должен активно и непосредственно участвовать в поиске и приобретении новых знаний и овладением новыми способами деятельности.

Рассмотрим возможности проблемного метода обучения на примере темы «Гидролиз», изучаемая в разделе «Теория электролитической диссоциации», курса химии 9-го класса.

Проблемный урок по теме «Гидролиз солей».

Цели урока:

Образовательная: Закрепить у школьников знания теории электролитической диссоциации, умение разделять вещества н а электролиты и не электролиты, определять характер среды по окраске индикатора. Сформировать знания о гидролизе, как особом свойстве солей. Доказать влияние состава соли на направление реакции, и привести учащихся к выводу о смещении равновесия диссоциации молекул воды, за счет связывания одного из ее ионов ионами соли. Сформировать умение по составу соли (ее природе) прогнозировать реакцию среды.

Воспитательная: Через проблемный метод обучения раскрыть перед учениками научный путь познания через доказательство гипотезы, способствовать переходу знаний в убеждения. Посредством эксперимента привить навыки трудолюбия, бережного отношения к реактивам, к природе, эстетические качества.

Развивающая: На примере свойств солей, различной природы, их отношение к воде, продолжить развитие умений наблюдать, сравнивать изучаемые явления, выявлять причинно – следственные связи, делать соответствующие выводы.

Тип урока:

По дидактической цели – формирование новых знаний.

По способу организации – проблемный.

Методы обучения:

Основной – проблемный.

Частные методы и методические приемы:

- преподавание; фронтальная беседа, воспроизводящая беседа с использованием демонстрационного эксперимента.

- Учения; эвристическая беседа, лабораторные опыты.

Средства наглядности: таблица растворимости.

Оборудование для эксперимента: штатив с пробирками, растворы лакмуса и фенолфталеина, растворы солей; хлорида натрия, карбоната натрия, хлорида аммония, ацетата аммония.

Литература:

1. Программа по химии для средней школы. М. Из-во «Дрофа». 1999. с.34

2. Ф.Г. Фельдман, Г.Е. Рудзитис. Химия. 9-й класс. М. Просвещение. 1999.с.18-20

3. Н.С. Ахметов. Актуальные вопросы курса неорганической химии. М. Просвещение. 1991.с.176-180

Межпредметные связи:

Физика – заряд ионов.

Биология – процесс гидролиза в организме человека; использование гидролиза при внесении удобрений в почву.

Внутрипредметные связи:

Теория строения вещества, теория электролитической диссоциации, свойства кислот и оснований, их действие на индикаторы, понятия электролит, не электролит.

Структурные элементы урока:


1. Восстановление опорных знаний.

Деятельность учи

Актуально: