Электропривод летучих ножниц

Содержание

Введение 4

1. Общая часть 6

1.1 Технологический процесс цеха 6

1.2 Конструкция, кинематическая схема и техническая характеристика
механизма 9

1.3 Условия и режим работы электрооборудования, требования к
электроприводу 11

2 Специальная часть 12

2.1 Выбор рода тока, величины питающего напряжения и системы
управления электроприводом 12

2.2 Расчет мощности двигателей и их выбор 13

2.3 Расчет и выбор силовых элементов электропривода 15

2.4 Система автоматического регулирования 17

2.5 Выбор аппаратуры защиты и коммутации 21

2.6 Описание схемы управления, защиты и сигнализации 21

2.7 Возможные перспективы развития электропривода машины на базе достижения науки и техники 25

2.8 Специальный вопрос 26

3 Организация производства 31

3.1 Организация обслуживания электрооборудования 31

3.2 Организация ремонта электрооборудования 33

4 Экономика производства 36

4.1 Форма оплаты труда 36

4.2 Расчет заработной платы 36

4.3 Определение затрат на содержание электрооборудования 38

4.4 Технико-экономические показатели дипломного проекта 40

5 Охрана труда 41

5.1 Общие правила охраны труда 41

5.2 Правила ТБ при техническом обслуживании и ремонте
электрооборудования 43

5.3 Противопожарные мероприятия 44

5.4 Техническое обслуживание двигателей постоянного тока 45

6 Охрана окружающей среды 47

Литература 50

ПриложениеА. Дипломное задание 51

Приложение В. Обозначения на функциональной схеме 53



Введение

Идея создания второго крупного завода рядом с КМК возникла еще в годы первых пятилеток, но только в 1950 г. появилась возможность вернуться к вопросу о строительстве завода. В 1957г. Совет Министров СССР утвердил проектное задание на строительство Западно-Сибирского металлургического комбината в городе Новокузнецке, и уже в 1961г. началось строительство первой коксовой батареи, которая 1 декабря 1963г. выдала первый кокс. 27 июля 1964г. считается днем рождения комбината. Страна получает первый запсибовский чугун.

ЗСМК один из современных крупнейших предприятий СНГ, с полным металлургическим циклом. Он находится в самом центре азиатского материка, на юге Кузнецкого бассейна. Комбинат расположен на территории 3000 га. в 25 км. от г. Новокузнецка.

Строительство комбината и реконструкция цехов и агрегатов сопровождались широким применением новой техники и технологий, внедрением передового отечественного и зарубежного опыта, совершенствованием технологических процессов и оборудования. Освоению современных металлургических агрегатов большой единичной мощностью способствовало внедрение научно-технических разработок. Опыт и достижения ЗАПСИБа широко используются в отечественной и зарубежной практике.

Со дня рождения комбината, практически каждый год вводились в строй новые цехи и производства: пущен проволочный стан, получен первый прокат на мелкосортном стане, конвертерный цех №1 выдал первую сталь. 27 декабря 1969г. пущен блюминг, а в апреле 1970г. непрерывно-заготовочный стан. Таким образом, был замкнут полный металлургический цикл.

В 1971-1980гг. в строй действующих вводились новые агрегаты и цеха: доменная печь №3, кислородно-конвертерный цех №2, седьмая коксовая батарея, сталепроволочный цех метизного производства.

Все цеха комбината можно классифицировать по основным производствам:

- коксохимическое производство

- аглоизвестковое производство

- доменное производство

- сталеплавильное производство

- прокатное производство

- метизное производство

- производство товаров народного потребления

- транспорт

- ремонтная база комбината

- соцкультбыт

Совсем недавно началось строительство мебельного цеха, в нем будут изготовляться из заготовок древесины современная, изысканная мебель, с дизайном на уровне мировых образцов.

Транспорт -это неотъемлемая часть ЗАПСИБа. Транспортировка грузов осуществляется железнодорожным, конвейерным и автомобильным транспортом. Протяжонность железнодорожных путей 371км, конвейерных 90км. Перевозка грузов железнодорожным транспортом составляет 1,0 млн.т. в год, объем автомобильных перевозок-17,0 млн.т, грузооборот составляет 96,0 млн.тонно-километров.

ЗАПСИБ предусматривает своим сотрудникам и их семьям возможность отдыхать и заниматься спортом круглый год. Для этого нужны здания соцкультбыта.В их состав входят: спорткомплекс "Богатырь", плавательный бассейн "Запсибовец". В культурном центре АО ЗСМК находят занятия по душе более 6 тысяч взрослых и детей. Здесь созданы все условия для отдыха и творчества, для этого существуют балетные классы, хоровые и музыкальные студии. Профилактории и поликлиники предоставляют запсибовцам массажи, физиотерапевтическое лечение.

Для детей любого возраста построено множество детских дач и лагерей.

ЗСМК выпускает огромное количество различной продукции. Вся его продукция имеет отличные технические характеристики, благодаря использованию отличной технологии, совершенствованию оборудования и повышения квалификации персонала.

Целью дипломного проекта является проверочный расчет существующего электропривода летучих ножниц 130т, находящегося в среднесортном цехе.

Проект выполнен согласно дипломного задания (приложение А)


1. Общая часть

1.1 Технологический процесс цеха

Непрерывный среднесортный стан «450» предназначен для прокатки нормальных и облегченных тонкостенных балок и швеллеров, в том числе высокоэкономичных балок и швеллеров с параллельными полками, а также уголков, круглого и полосового проката.

Стан состоит из участка нагревательных печей, 16-ти рабочих клетей, двухстороннего холодильника, участка подготовки клетей и участка отделки и уборки проката.

Подача заготовок к стану производится двумя способами: либо от непрерывно-заготовочного стана (НЗС) через холодильник и передаточный шлеппер на подводящий рольганг печей, либо со склада заготовок электромагнитными кранами на три загрузочные решетки печей, откуда заготовка подается на подводящий рольганг к печам. В первую и вторую печь заготовка подаётся через шагающую решетку и распределяется по печам рольгангом между печами. А в третью подается с подводящего рольганга в печь при помощи шлеппера накопителя.

Для нагрева заготовок используется три печи с шагающим подом и торцевой загрузкой и выдачей.

В печах заготовки нагреваются до 1150 — 1200 0С. Производительность одной печи 170 т/час.

Для выдачи заготовок из печи на рольганг используется машина безударной выдачи.

Перед первой клетью на ножницах 400 т происходит деление заготовок для фасонного проката на части длиной 4 – 6 м. За ножницами заготовки кантуются.

Прокатка осуществляется в 11 — 16 пропусков.

Черновые клети разделены на 3 трехклетьевые непрерывные группы, в каждой из которых последовательно установлены горизонтальная, комбинированная и вторая горизонтальная клети с диаметром валков 630 мм.

Фасонные профили прокатываются с выпуском раската на рольганг за каждой третьеклетьевой черновой группой.

Также возможна непрерывная прокатка мелких круглых и угловых профилей из длинной заготовки.

Чистовая непрерывная группа состоит из семи клетей диаметром валков 530 мм, расположенных по схеме К-Г-Г-К-Г-К-Г (К — комбинированная, Г — горизонтальная), для прокатки всех профилей, кроме двутавровых балок с параллельными полками, для прокатки которых горизонтальные заменяются универсальными с диаметром горизонтальных валков 900 мм, при этом клети располагаются по схеме К-У-У-К-У-К-У (У — универсальная).

Привод как универсальных, так и горизонтальных клетей осуществляется от одного электродвигателя через двухскоростной комбинированный редуктор.

Для обеспечения высокой точности проката клети выполнены жесткими, а электродвигатели установлены в становом пролёте.

Перед чистовой группой установлены летучие ножницы 130 тонн для обрезки переднего конца раската , аварийной резки и раскроя фасонных профилей, а за последней чистовой клетью — летучие ножницы 63 тонны для порезки простых и фасонных профилей по длине холодильника.

Скорость прокатки на чистовой группе колеблется от 4 м/с до 12 м/с в зависимости от прокатываемого профиля.

Готовый прокат поступает на двухсторонний холодильник. По сторонам холодильника прокат распределяется при помощи стрелки. Перемещаясь по решеткам холодильника к отводящему рольгангу, материал охлаждается.

Для термической обработки проката дополнительно используется установка термоупрочнения, обеспечивающая гидротранспорт проката с требуемой скоростью с одновременным равномерным охлаждением его по всей длине.

Каждая сторона холодильника оборудована двух ниточным отводящим рольгангом, по которому осуществляется подача штанг к правильным машинам участка отделки и уборки проката.

Участок отделки и уборки проката (адьюстаж) состоит из четырех идентичных технологических ниток (линии «100», «200», «300», «400»).

После правильных машин материал поступает на два сдвоенных рольганга и далее распределяется по технологическим ниткам.

На каждой нитке при помощи поперечного транспортера по заданной программе набираются пакеты штанг, на ножницах холодной резки они режутся на длины от 6 до 24 м, и подаются к инспекторским стеллажам, оборудованным системой магнитных кантователей, позволяющих произвести осмотр любого профиля сортамента с любой стороны.

Круглые и квадратные профили передаются на специальные устройства для пакетировки.

Пакеты фасонных профилей передаются к дозирующим решеткам, перекладываются на два параллельных рольганга и транспортируются к магнитным штабелеукладчикам.

При штабелировании уголков и швеллеров пакеты, лежащие на параллельных рольгангах, спариваются, затем двухслойная пачка перекладывается на опускающийся стол.

Далее происходит увязка набранных пакетов в пачки. Увязанные и оформленные пачки убирают с помощью кранов.

На стане «450» используется катаная заготовка сечением 150*150, 150*200, 160*270, 120*200 длиной от 4 м до 12 м, весом от 700 до 4100 кг из углеродистых и легированных сталей.

Готовый прокат выпускается в прутках длиной от 2 до 24 м, в пачках весом до 15 т, причем в потоке предусматривается резка на длины от 6 до 24 метров, а более короткие прутки будут получать на отдельно стоящих агрегатах. Затем готовая продукция поставляется заказчикам.

Летучие ножницы 130 тонн предназначены для вертикальной резки передних концов заготовок простых профилей и для шевронной отрезки передних концов заготовок фасонных профилей и раскроя раскатов фасонных профилей на длины, пропорциональные длине холодильника. Ножницы также служат для порезки проката при аварии на стане.


1.2 Конструкция, кинематическая схема и техническая
характеристика механизма

1.2.1 Конструкция механизма

Механизм резки ножниц, образованный кривошипами, шатунами и балансирами, в станине установлен летуче. Четыре двигателя через передачу (i = 2,92) приводят в движение нижний и верхний кривошипы ножниц. Кривошипы взаимно связаны парой зубчатых колес (i = 1).

По техническим условиям летучие ножницы должны обеспечивать перпендикулярность разрезаемого сечения полосы к ее оси, при хорошем качестве сечения, без заусенцев и загибов на концах; которые затрудняют подачу такой заготовки в последующие клети стана, а также вызывают трудности при дальнейшем передвижении заготовки по рольгангу.

Для обеспечения этих требований при разрезании крупных сечений проката с большой высотой необходимо параллельно-горизонтальное движение ножей в момент реза, и при этом скорость движения ножей должна быть равна скорости заготовки. На рис. 2 приведена схема кривошипно-шатунного механизма, обеспечивающего параллельно-горизонтальное движение ножей при разрезании металла.

Опыт эксплуатации показывает , что небольшое превышение скорости ножа над скоростью прокатки не вызывает нарушения качества сечения и даже желательно для лучшего отделения отрезанной заготовки от следующей за ней.

Ножницы работают в режиме запусков на каждый рез переднего конца, реза на мерные длины, а при аварийном резе непрерывно вращаются, пока не будет разрезана вся заготовка. Цикл работы таких ножниц заключается в форсированном пуске ножниц перед каждым резом, обеспечении к моменту скорости ножей, равной или немного превышающей (порядка 5%) скорости заготовки, разрезании заготовки, форсированном торможении привода и остановке ножниц в исходном положении. Таким образом, разгон до полной скорости и торможение с полной скорости должны происходить менее чем за один оборот ножей. Точность отрезаемых длин обеспечивается пуском ножниц перед каждым резом из строго фиксированного положения. Остановка ножниц в фиксированном исходном положении обеспечивается снижением скорости до небольшой величины (ползучая скорость) и отключением привода в исходном положении с применением большого тормозного момента привода.

1.2.2 Кинематическая схема механизма


Рисунок 1. – Кинематическая схема ножниц.

1.2.3 Техническая характеристика механизма

Техническая характеристика летучих ножниц 130 т

Максимальное усилие резки 130 т;

максимальная скорость прокатки 4,7 м/с;

минимальная скорость для максимального диаметра резки 1,74 м/с;

основная длина 2,5 м

передаточное число между ведущим валом и кривошипом 2,92;

минимальный интервал между проходом проката 2,8 сек

момент инерции на валу четырех двигателей GD2=3424 кГм2 (без двигателей).


1.3 Условия и режим работы электрооборудования, требования к
электрооборудованию и электроприводу

Электропривод летучих ножниц находится в машинном зале, а не в самом цехе, т.е. он работает в благоприятных условиях –хорошая вентиляция, отсутствует загазованность, пыль, вибрация наименьшая. Электропривод металлом не нагревается, что улучшает его работу.

Электропривод клети работает в повторно-кратковременном режиме, число включений в час достигает 360.

К электроприводу предъявляются следующие требования:

а) разгон и торможение привода до рабочих скоростей при заданных углах поворота ножей за время разгона;

б) надежную работу привода при большом числе включений двигателя;

в) фиксацию с большой точностью исходного положения ножей;

г) запас кинетической энергии движущихся деталей механизма и привода, достаточный для разрезания максимальных сечений при минимальной рабочей скорости.

Все электрооборудование находится в машинном зале оно выполнено в обычном исполнении т.к. не требуется защищать его от пыли, газов и возможных механических повреждений.

Двигатели находятся в цехе на механизме в условиях повышенной запыленности высокой температуры. Двигатели выполнены пылезащищенными с принудительной вентиляцией через промежуточный охладитель.

Все электрооборудование располагается в доступном для осмотра и ремонта месте.


2 Специальная часть

2.1 Выбор рода тока, величины питающего напряжения
и системы управления электроприводом

Выбор рода тока для электрооборудования летучих ножниц имеет большое значение, т.к. с ним связаны такие показатели, как технические возможности электропривода, масса и размеры электрооборудования, надежность и простота обслуживания, капиталовложения, стоимость эксплутационных расходов.

В настоящее время существует три типа двигателей.

Асинхронный двигатель с фазным ротором. Регулирование скорости ступенчатое, путем изменения сопротивления в цепи ротора. Электропривод прост, надежен, допускает большое число включений в час при средних и больших мощностях во всех режимах работы.

Недостатком этого двигателя является значительные потери в пускорегулирующих сопротивлениях. Он не обеспечивает необходимые жесткости механических характеристик. Повышенный износ двигателя, электромеханического тормоза и контактной аппаратуры управления.

Асинхронный двигатель с короткозамкнутым ротором. Используется для механизмов мощностью до 15 кВт в легком режиме работы. При необходимости регулирования скорости возможно использование двух или трехскоростные электродвигатели.

Двигатели постоянного тока. Применяются в электроприводах, к которым предъявляются повышенные требования в отношении регулирования скорости, а так же когда необходимо обеспечить низкие устойчивые скорости в разных режимах. Для механизмов подъема обычно используют двигатели последовательного возбуждения, т.к. они допускают большие перегрузки по моменту и имеют мягкую характеристику. Двигатели параллельного и независимого возбуждения применяют в тех случаях, когда требуются жесткие механические характеристики на низких скоростях, а так же для работы двигателя в генераторном режиме.

К электроприводу летучих ножниц предъявляются повышенные требования в отношении регулирования скорости, а так же необходимо обеспечить устойчивую угловую скорость в рабочем режиме.

Так как необходима высокая плавность регулирования скорости, а так же большой диапазон регулирования, то выбираем для привода ножниц электродвигатель постоянного тока с системой управления электроприводом типа тиристорный преобразователь–двигатель (ТП-Д). Привод реализован четырьмя двигателями постоянного тока с независимым возбуждением, взаимно механически соединенными.

2.2 Расчет мощности двигателей и их выбор

Определяем усилие, моменты и мощность резания заготовки максимального сечения 100х100 мм.

Дано: максимальная толщина заготовки 100 мм; максимальная ширина
заготовки 100 мм; предел прочности материала при температуре
900-9500С tmax=12 кГ/мм2; на участке резания радиус траектории ножей rср=456 мм.

Заготовка 100х100 мм разрезается в положении на ребро, при наличии закруглений по углам заготовки высота диагонали d=135 мм

1. Определяем усилие резания (2) стр. 342


Принимаем, что максимальное усилие резания соответствует внедрению каждого ножа в металл на половину высоты сечения, т.е. 1/2(d/2). Тогда угол приложения максимального усилия резания будет


Площадь сечения металла в месте приложения максимального усилия резания

Вертикальная скорость внедрения ножей в металл



Скорость деформации металла

Максимальное усилие резания, принимая коэффициенты влияния зазора между ножами и притупления ножей R2=1,2 и R3=1,3:


2. Определяем момент и мощность резания

Плечо приложения максимального усилия резания


Максимальный статический момент резания


Максимальная мощность резания при к.п.д. ножниц h=0,85 и угловой скорости ножниц


Для обеспечения требуемого времени разгона и уменьшения нагрузки на двигатель на привод ножниц устанавливаем четыре электродвигателя типа МКН, напряжение питания 230В, номинальный ток 3500А, мощностью 280кВт, скорость вращения двигателя 360 об/мин.

Коэффициент перегрузки двигателей по мощности резания


Допустимый коэффициент перегрузки R=2,5

3. Определяем влияние маховых масс ножниц на процесс резания

Длительность цикла одного резания при повороте суппортов на 3600


Длительность резания при угле резания a =300= p/6 и угловой скорости ножей
wн=3,9 1/сек


Так как время резания незначительно по сравнению с длительностью цикла резания, то очевидно резание будет осуществляться за счет кинетической энергии маховых масс ножниц и их привода, восстанавливаемой за время


2.3 Расчет и выбор силовых элементов электропривода


Рассчитываем и выбираем тиристорный преобразователь, номинальный ток которого выбирается из условия, Iном.пр., А

где Iном.дв –номинальный ток двигателя, А, Iном.дв=3500А;

Хпр –перегрузочная способность преобразователя по току, Хпр=2;


Хдв –перегрузочная способность двигателя, Хдв=2,5

Выбираем тиристорный преобразователь серии КТЭУ 600В, 5кА.

Выбор трансформатора для питания тиристорного преобразователя производится по расчетным значениям фазных токов во вторичной (I2ф) и первичной (I1ф) обмотках, вторичной ЭДС и типовой мощности Sт.р.

Расчетное значение ЭДС (Е2ф) трансформатора при работе преобразователя в режиме непрерывного тока находится по требуемому выпрямленному напряжению с учетом необходимого запаса на падение напряжения в преобразователе.

Е2ф=Кu·Кc·Кd·Кr·Ud,В

где Кu –коэффициент, характеризующий соотношение Е2ф/Еdo и зависящий от схемы выпрямления, 1/1,17;

Кc –коэффициент, учитывающий возможные снижения напряжения питающей сети, 1,05-1,0;

Кd –коэффициент, учитывающий неполное открывание тиристоров при максимальном управляемом сигнале, 1-1,15, при согласованном управлении;

Кr –коэффициент, учитывающий падение напряжения в преобразователе, 1,05;

Ud –напряжение тиристорного преобразователя 600В

Е2ф=1/1,17·1,05·1,15·1,05·600=650В

Расчетное действующее значение фазного тока вторичной обмотки определяется по выпрямленному току (Id) с учетом схемы выпрямления.

I2ф=Кi·КI2·Id,А

где Кi –коэффициент, 1;

Кi2 –коэффициент, характеризующий отношение I2ф/Id и зависящий от схемы выпрямления, 0,577;

I2ф=1·0,577·5000=2885А

Необходимый коэффициент трансформации находится, Ктр,

Ктр=0,95·U1ф/E2ф

где U1ф –номинальное фазное напряжение сети.

Ктр=0,95·600/650=0,88

Расчетное значение действующего фазного тока первичной обмотки трансформатора определяется по току Id с учетом коэффициента Ктр

I1ф=Кi·КI1·Id/Ктр, А

где КI1 –коэффициент, характеризующий отношение I1ф/Id и зависит от схемы выпрямления, 0,471.

I1ф=1·0,471·5000/0,88=2676А

Расчетное значение типовой мощности, характеризующий расход активных материалов и габариты трансформатора, определяется как:

Sтр=Кu·Кc·Кd·Кr·Кi·Кs·Ud·Id·3, В·А

где Кs –коэффициент схемы, 1,345.

Sтр=1/1,17·1,05·1,15·1,05·1·1,375·600·500·3=1341кВ·А

Выбираем трансформатор типа ТСЗП-1600/10У3 Р=1615кВ·А, U=6 (10)кВ.

2.4 Система автоматического регулирования

2.4.1 Требования к системе автоматического регулирования

Система управления электроприводом построена по принципу подчиненного регулирования. Главный параметр регулирования — скорость вращения приводного двигателя, все остальные параметры вспомогательные и подчинены главному.

Конструкция САР должна удовлетворять следующим требованиям:

· взаимозаменяемость однотипных элементов;

· согласованность входных и выходных величин различных элементов;

· построение всех узлов на основе небольшого числа модулей.

Конструктивно САР летучих ножниц выполнена на основе блочной регулировочной системы «РЕГИСТОР». В ее состав входят все необходимые элементы: усилители, датчики регулируемых величин, задатчики (преобразователи) регулируемых величин, источники питания, вспомогательные элементы (узлы связи, ограничители, логические блоки и т. п.).

Основным элементом системы авторегулирования является операционный усилитель.



Система «РЕГИСТОР» специально предназначена и оборудована для управления тиристорными преобразователями. Комплекты модулей разделяются по функциональным признакам на блоки. Модули САР ножниц размещаются в ваннах типа А, В и С, которые находятся в шкафу «УНИСТОР В».

Ванна А содержит модули СИФУ и модули контура тока.

Ванна В состоит из модулей контура скорости.

Ванна С содержит модули для обработки сигналов с технологических датчиков.

2.4.2 Описание элементов системы автоматического
регулирования

Якорь двигателя питается от двух групп тиристорного преобразователя. Система регулирования осуществляет скоростную регулировку и регулировку положения и выполнены по принципу подчиненного регулирования, т. е. параметр тока подчинен параметру скорости.

Действительное значение скорости снимается с тахогенератора Е1 и через преобразователь 5 подается в виде сигнала обратной связи w на один из входов регулятора скорости 4.

Действительное значение положения ножей определяется сельсином-датчиком Y1, один оборот которого соответствует одному обороту ножниц.

Значение скорости предыдущей клети обрабатывается в центральном цифровом технологическом регуляторе (ЦТЦР) 10 и через частотно-аналоговый преобразователь 11 и задатчик интенсивности 12 подается на вход регулятора скорости 4 в виде требуемой величины скорости —w*. На входах регулятора скорости задание w* сравнивается с сигналом обратной связи по скорости таким образом, что Rw управляется алгебраической суммой сигналов w* и w. Выход регулятора скорости является заданием для регулятора тока 2 (Riк) ведущего и ведомого приводов. Задание тока перед Riк преобразуется задатчиком интенсивности тока 3.

Кроме задания тока, схема регулирования ведущего привода формирует блокирующие сигналы для ведомого привода: Ф — запрещение работы привода и S`0 — требование ограничения тока якоря до 10% Iн. На входах регулятора тока сравнивается требуемая величина тока якоря i*КА, i*КВ с сигналом обратной связи по току — iKA, iKB.

Под действием алгебраической суммы этих сигналов регуляторы тока формируют управляющие сигналы для генератора импульсов GI — a*A и a*B.

Сигналы a*A и a*B преобразуются генератором импульсов в импульсы управления тиристорами lA, и lB.

При выставлении ножей в исходное положение в работу включаются следующие блоки: блок 9 отменяет команду «старт» в ЦТЦРе. После отмены команды «старт» логика блока 18 блокирует тракт задания скорости сигналом W. Направление вращения при доводке ножей в исходное положение и их скорость определяются блоками 6,7,8.

После достижения исходного (верхнего) положения ножей появляются сигналы: S0 — из блока управления положением 7, I0 — из датчика нулевого тока 15, W0 — из логического блока управления скоростью 13. Под действием этих сигналов блок ограничения тока 16 и 19 формирует команды на ограничение тока до 10% Iн в ведущем и ведомом приводах. Привод подготовлен к новому «старту».

Блок аварийной логики LOG при появлении сигналов:

а) сверхток преобразователя — IKM;

б) потеря напряжения синхронизации — U0;

в) превышение максимальной скорости WM;

г) превышение максимального значения задания скорости W*M;

д) авария в системе УНИСТОР—Y2-50, блокирует регулятор тока, чем вызывает режим искусственного инвертора преобразователя и отключает преобразователь от питающей сети.


2.5 Выбор аппаратуры защиты и коммутации

Таблица 1 –Уставки защиты

Название
защиты

Уставка

Численное
значение

Тип аппарата
Максимальная токовая защита1,25 Iном.дв4375АЭлектронная
Максимальная токовая защита ВАБом2,2 Iном.дв7700АВАБ
Токовая отсечка2,5 Iном.дв8750А

Электронная

(САР)

Защита от

обрыва поля

16А15,7/11АРЭВ821
Защита от превышения оборотов

1,1 nном

1,25 nном

395 об/мин

450 об/мин

Электронная

Центробежный выключатель

2.6 Описание схемы управления, защиты и сигнализации

Назначение отдельных элементов схемы управления.

В1-50 – включает и отключает схему управления.

В2-50 – переводит схему управления из режима «Подготовка» в режим «Работа».

В3-50 – фиксирует, что привод выведен из исходного состояния (наличие сигнала задания или обратной связи).

В4-50 – регистрирует сигнал о повреждении и отключает преобразователь: немедленно в режиме «Подготовка» и с выдержкой времени в режиме «Работа».

В5-50 – регистрирует сигнал аварии.

В6-50 – реле времени, отключающее систему управления (реле В1-50) при повреждение в режиме «Работа».

Различают следующие виды шин:

Р/Р – подача сигнала о повреждении на вход Y 1-50;

Н/Н – подача сигнала об аварии на вход Y 2-50;

Р/Н \

О/Н – шины, переключаемые при помощи контактов реле В2-50.

Н/О /

Подготовка привода к работе

Для включения тиристорного преобразователя необходимо включить «автоматы цепей возбуждения двигателей Р4 и Р5 на щите 7в254, автоматы цепей управления Р1, Р2, Р7 на щите 7в252, автоматы Р1, Р1-8, Р2-8 для собственный нужд шкафов «Унистор» и автомата А2 в цепи управления ВАБов.

При включении тиристорного преобразователя со щита дистанционного управления (ШДУ) ключом КУ в схеме управления и сигнализации замыкается контакт В20, который включает В1-50. Замыкающий контакт реле В1-50 подает напряжение на сборные шины +5 и Zv1.

Включение ВАБов производится оператором с поста управления ПУ-5
ключом АН21.

С этого же поста осуществляется выбор режима работы ножниц. Толчковый или рабочий режим оператор выбирает ключом АН27.

Выбором режима работы заканчивается процесс подготовки привода ножниц к работе.

Отключение привода ножниц.

Отключение привода ножниц может быть осуществлено обслуживающим персоналом и аварийно в результате срабатывания защиты.

При отключении со ШДУ ключом КУ размыкаются контакт реле В21 – теряет питание реле В1-50, в результате чего снимается напряжение с шины +2 в узле релейного управления СО1.

Аналогично происходит отключение кнопкой В2-51 на шкафу «Унистор В». При отключении привода с поста управления ПУ-5 ключом АН21 получает питание реле В31, размыкающий контакт которого в цепи реле В30 вызывает отключение ВАБов.

На световом табло НD9К52 загорается лампочка сигнализирующая об отключении ВАБов.

Защита привода ножниц

При работе привода часть аварийных сигналов поступает на аварийно-отказные шины, которые обеспечивают отключение привода мгновенно или с выдержкой времени. Характер отключения зависит от режима работы привода («подготовка» или «работа») и от вида срабатывающей защиты.

Защита трансформатора

Трансформатор имеет две ступени защиты от повреждения. Защита первой ступени вступает в действие при срабатывании газовой и тепловой защит.

При этом в схеме управления приводом включается реле В40, через замыкающие контакты которого включается лампочка Н7 на световой панели HDS-1 шкафа «Унистор В», и через промежуточное реле В64 посылается сигнал на ЩДУ о комплексном повреждение первой ступени.

Защита второй ступени вступает в действие при аварийном срабатывании газовой или тепловой защит.

При этом в схеме управления приводом включается реле В41, через замыкающий контакт которого подается напряжение 48В на шину Н/Н.

От перенапряжения трансформатор защищен разрядником Р1.

Защита тиристорного преобразователя

Защита ТП от перенапряжения осуществляется разрядниками Р2, Р3 и блоками защит PGU, кроме того каждый тиристор защищен от перенапряжения RC цепочкой.

При срабатывании защиты от перенапряжения на блоках PGU через контакты реле В3,В1 подается напряжение 48В на шину Р/Н. На световой панели HDS-1 загорается лампочка Н1, сигнализирующая о перенапряжении в цепи ТП.

Защита двигателя

Максимальная токовая защита осуществляется системой регулирования и ВАБом. При превышении тока якоря уставки максимального расцепителя ВАБа происходит отключение. Через замыкающие контакты №2, №3 в схеме управления приводом отключается реле В8.

В схеме управления и сигнализации напряжение 48В через замкнутые контакты В8 и В23 поступают на шину Н/Н – отключается реле Y2-50 и загорается лампочка Н2 на световой панели HDS-1.

Защита двигателя от превышения допустимой скорости осуществляется с помощью центробежного выключателя К1 и системой регулирования. При срабатывании центробежного выключателя его контакт включает реле В2-3 в узле ВО2 и происходит отключение.

При нетрогании двигателя в схеме регулирования срабатывает реле В1-38, которое через промежуточное реле В51 в схеме управления приводом отключает ВАБы аналогично отключению при перенапряжении в цепи якоря, одновременно в блоке аварийной логики отключается реле В1-5, замыкающие контакты которого падают напряжение 48В на шину Н/Н.

При потере возбуждения или при перенапряжении в цепи якоря двигателей получает питание реле В32, размыкающий контакт которого вызывает отключение ВАБов.

На световых панелях HDS-1 загорается лампочка Н6.

При срабатывании тепловой защиты двигателей в схеме управления приводом получает питание реле В34, а размыкающий отключает реле времени ВС2.

Размыкающие контакты реле В34 блокируют включение толчковой подачи (через контакт реле В84), блокируют работу ножниц от ЦТЦРа и снимают напряжение с реле В1-6 в узле СО1, и включается узел регулирования – ножи возвращаются в исходное положение.

По истечению выдержки времени от реле ВС2 происходит отключение привода ножниц, аналогичное отключению с поста ПУ-5 ключом АН21.

Отключение вентиляции двигателей вызывает отключения привода ножниц, аналогичное срабатыванию тепловой защиты, только реле В33 получает питание с выдержкой времени от реле ВС1.

2.7 Возможные перспективы развития электропривода машины на базе достижения науки и техники

Релейно-контактные схемы (РКС) получили самое широкое распространение в автоматизированном электроприводе несколько десятков лет назад и, с различными дополнениями и усовершенствованиями, эксплуатируются до настоящего времени. Наряду с такими достоинствами, как наглядность и простота в обслуживании, они имеют несколько существенных недостатков:

· громоздкость;

· невысокая надежность из-за быстрого износа контактов, особенно при частых включениях, и выхода из строя коммутирующей аппаратуры, а также связанная с этим необходимость содержать большой по численности оперативный и ремонтный персонал;

· повышенное энергопотребление.

Наличие данных факторов вызывает необходимость искать пути замены РКС на новое, более совершенное оборудование, лишенное вышеперечисленных недостатков. Одним из таких устройств являются управляющие системы, построенные на базе микропроцессоров — программируемых контроллеров.

В современном автоматизированном электроприводе получают широкое применение программируемые микроконтроллеры (ПК), представляющие собой специализированные управляющие микроЭВМ, работающие в реальном масштабе времени по определенным рабочим программам, размещаемым в ПЗУ. По данным, приведенным в /3/, в мире выпускается свыше 150 типов ПК. Они используются примерно в 35% систем автоматизации технологических процессов и в большинстве случаев реализуют законы программно-логического управления или аналого-цифрового регулирования. Различают ПК трех типов:

· программируемые логические контроллеры (ПЛК), ориентированные на реализацию алгоритмов логического управления, обеспечивающих замену релейных и бесконтактных схем э

Подобные работы:

Актуально: