Шпаргалки на экзамен в ВУЗе (1 семестр, математика)
1) Основные понятия линейной алгебры. Задачи о перевозках. Элементы линейной алгебры. Задачи о перевозках. На 2-х складах А1 и А2 сосредоточено а1, а2 тон однородного груза, которые нужно доставить в 3-и пункта назад в В1, В2, В3, потребн пунктов назначения, равны в1, в2, в3 тон. Известно стоимость перевозки одной тонны груза, из каждого пункта отправления в каждый пункт назначения. Требуется составить такой план перевозки, при котором общая стоимость перевозок была бы наименьшей. А1+А2=В1+В2+В3 Хij – груз(тон) Сij – цена 1т груза. С= Т.о задача ставится к нахожд неизвестного X и ij удовлетвор системе Ур-ий Причем найден Ур-е должны быть такими чтобы ф-я приняла миним з-я. Для реш сформир задачи необходимо уметь решать системы лин Ур-й , т.к. система явл сист лин Ур-й относит xij. Сист m лин Ур-й с n нейзв x1, x2,…,Xn имеет вид а11x1+а12x2+…+a1nXn=b1; a21x1+a22x2+…+a2nXn=b2;…….;am1x1+am2x2+…amnxn=bm.Коэфициенты аij при неизвестн xij (j =1,2,…n), для удобства обозн одной буквой с 2-я индексами i-номер Ур-нии, j- неизвстного |
10)Метод Гаусса.(Карл Фридрих Гаусс (1777-1855) немецкий математик)В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.Рассмотрим систему линейных уравнений: |
11) Векторы, действия над ними.Определение.Вектором называется направленный отрезок (упорядоченная пара точек). К векторам относится также и нулевой вектор, начало и конец которого совпадают.Определение.Длиной (модулем) вектора называется расстояние между началом и концом вектора. |
12)Скалярное произведение векторов, его св-ва и вычисления. Определение. Скалярным произведением векторов |
13)Векторное произведение векторов. Его св-ва и вычисление. Определение.Векторным произведением векторов 3 Свойства векторного произведения векторов:1) |
14)Смешенное произведение векторов его св-ва и вычисления.Определение.Смешанным произведением векторов Свойствасмешанного произведения: 1)Смешанное произведение равно нулю, если: а)хоть один из векторов равен нулю;б)два из векторов коллинеарны;в)векторы компланарны. 2) 4) Для нахождения длины высоты пирамиды найдем сначала площадь основания CD. Sосн = |
15) Общее вычисление прямой на плоскостиОпределение. Любая прямая на плоскости может быть задана уравнением первого порядкаАх + Ву + С = 0,причем постоянные А, В не равны нулю одновременно, т.е. А2 + В2 0. Это уравнение первого порядка называют общим уравнением прямой.В зависимости от значений постоянных А,В и С возможны следующие частные случаи:
Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий. |
Уравнение прямой может быть рассмотрено как уравнение линии пересечения двух плоскостей.Как было рассмотрено выше, плоскость в векторной форме может быть задана уравнением: |
17)Взаимное расположение двух плоскостей характеризуется двумя возможностями.1). Две плоскости не имеют общих точек, и , в таком случае, они называются параллельными (на рис. 28 Две плоскости имеют хотя бы одну общую точку, и в таком случае они называются пересекающимися. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат обе общие точки этих плоскостей (аксиома). Таким образом, две плоскости пересекаются по прямой (на рис. 28 Пересекающиеся плоскости образуют четыре двугранных угла. Если один из них прямой, тогда и остальные углы тоже прямые, а плоскости называются перпендикулярными. В качестве параллельных плоскостей на каждом шагу встречаем параллельные грани одного дома. Плоскости стен домов перпендикулярны плоскости земли. |
18) Взаимное расположение двух прямых на плоскости.Определение. Любая прямая на плоскости может быть задана уравнением первого порядка Ах + Ву + С = 0, причем постоянные А, В не равны нулю одновременно, т.е. А2 + В2 0. Это уравнение первого порядка называют общим уравнением прямой. В зависимости от значений постоянных А,В и С возможны следующие частные случаи:
Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий. |
Взаимное расположение двух прямых и пространстве характеризуется следующими тремя возможностями.1)Прямые лежат в одной плоскости и не имеют общих точек - параллельные прямые. 2)Прямые лежат и одной плоскости и имеют одну общую точку - прямые пересекаются. 3)В пространстве две прямые могут быть расположены еще так, что не лежат ни в одной плоскости. Такие прямые называются скрещивающимися (не пересекаются и не параллельны). Теорема. Если одна из двух прямых лежит в некоторой плоскости, а другая пересекает эту плоскость и точке, которая не лежит на первой прямой, то эти прямые скрещиваются. На рис. 26 прямая a лежит в плоскости Теорема. Через каждую из двух скрещивающихся прямых проходит только одна плоскость, параллельная другой прямой. На рис. 26 прямые a и b скрещиваются. Черен прямую а проведена плоскость Примеры скрещивающихся прямых: трамвайный рельс и троллейбусный провод по пересекающейся улице, нeпересекающиеся и непараллельные ребра пирамид или призм и пр. Все три случая можно видеть еще на примере прямых, по которым встречаются стены и потолок или стены и пол комнаты. |
2)Матрицы,действия над матрицами.Привести пример.Определение.Матрицей размера mn, где m- число строк, n- число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы.Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются aij, где i- номер строки, а j- номер столбца. А = |
20)Взаимное расположение прямой и плоскости. Для выяснения взаимного расположения прямой (x=b1t+x0; y=b2t+y0; z=b3t+z0) b(b1, b2, b3)-направляющий вектор прямой Ax+By+Cz+D=0 Чтобы найти точку пересечения прямой и плоскости, надо решить сист Ур-ий A(b1t+x0)+B(b2t+y0)+C(b3t+z0)+D=0; Ab1t+Ax0+Bb2t+By0+Cb3t+Cz0+D=0; (Ab1+Bb2+Cb3)t=-(Ax0+By0+Cz0+D). 1Случай: Ab1+Bb2+Cb3=0, определяет единственное решение, т.к. получаем конкретное значение параметра t, подставив которое в исходное Ур-е прямой получаем точки пересеч с данной плоскостью 2Случай: Пусть выражение Ab1+Bb2+Cb3=0, Ax0+By0+Cz0+D=0, т.к. левая часть не может быть равна правой, это говорит о том что прямая параллельна плоскости. 3Случай: Пусть Ab1+Bb2+Cb3=0, Ax0+By0+Cz0+D=0, Ур-ям удовлетворяют любые знач t след прямая лежит в плоскости. |
О М r1 r2 F1 F2 F1, F2 – фокусы. F1 = (c; 0); F2(-c; 0) с – половина расстояния между фокусами; a – большая полуось; b – малая полуось.Теорема.Фокусное расстояние и полуоси эллипса связаны соотношением:a2 = 2 + c2.Доказательство: В случае, если точка М находится на пересечении эллипса с вертикальной осью, r1 + r2 = 2 |
22)ГиперболаОпределение.Гиперболой называется множество точек плоскости, для которых модуль разности расстояний от двух данных точек, называемых фокусами есть величина постоянная, меньшая расстояния между фокусами. y M(x, y) r1 r2 x F1 a F2 c По определению r1 – r2= 2a. F1, F2 – фокусы гиперболы. F1F2 = 2c.Выберем на гиперболе произвольную точку М(х, у). Тогда: обозначим с2 – а2 = b2 (геометрически эта величина – меньшая полуось)
|
23)Парабола. Параболой называется множество точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки, называемой фокусом, и от данной прямой, называемой директрисой и не проходящей через фокус.Расположим начало координат посередине между фокусом и директрисой. А у М(х, у) О F x p/2 p/2 Величина р (расстояние от фокуса до директрисы) называется параметром параболы. Выведем каноническое уравнение параболы.Из геометрических соотношений: AM = MF; AM = x + p/2;MF2 = y2 + (x – p/2)2 (x + p/2)2 = y2 + (x – p/2)2 x2 +xp + p2/4 = y2 + x2 – xp + p2/4 y2 = 2px Уравнение директрисы: x = -p/2. Пример. На параболе у2 = 8х найти точку, расстояние которой от директрисы равно 4. Из уравнения параболы получаем, что р = 4. r = x + p/2 = 4; следовательно:x = 2; y2 = 16; y = 4. Искомые точки: M1(2; 4), M2(2; -4). |
25)Общее ур-е линии второго порядкаКривые 2го порядка описываются с помощью общего ур-я: Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где а) Каноническое ур-е эллипса
Если a=b, то x2+b2=a2 - ур-е окружности. б) Ур-е гиперболы: x2/a2-y2/b2=1 в) ур-е параболы: y2=2px или y=ax2 г) ур-е сферы: x2+y2+z2=а2 (r2=(x-a)2+(y-b)2+(z-c)2) д) ур-е эллипса: x2/a2-y2/b2+z2/c2=1 |
О B a Таким образом, на оси ОХ располагаются действительные числа, а на оси ОY – чисто мнимые.С помощью подобного геометрического представления можно представлять числа в так называемой тригонометрической форме. |
Основные действия с комплексными числами вытекают из действий с многочленами.1) Сложение и вычитание.
Подобные работы:
Актуально:
|