min {-LOGa(1-ε); LOGa(1+ε)}= δε
| x | < δε
LOGaB
18 y=cos x (-∞; +∞)
| cos x – cos a | < ε
| 2 sin (x-a)/2 + sin (x+a)/2 | < ε
2 | sin (x-a)/2 | + | sin (x+a)/2 | < ε
2 | sin (x-a)/2 | < ε
| x-a | < ε =δ(ε)
y=sin x (-∞; +∞)
y=tg x=sin x/cos x кроме x=π/2+πk
y=ctg x=cos x/sin x кроме x=πk
19 Первым замечательным пределом называется
lim sin x/x=1
x→x0
20 Второй замечательный предел
lim(1+1/a)Є=e
a→∞
Число е (число Эйлера, неперово число) играет важную роль в матанализе.
lim (1+a)№’Є=e
a→0
21 Пусть имеется ф-ия y=f(x), определённая на (а; в), говорят что ф-ия имеет в т. х0∈(а; в) производную f ’(x0) если существует предел
lim (f(x)-f(x0))/(x-x0)
x→x0
Производной ф-ии y=f(x) в точке х0 называется предел отношения приращения ф-ии к приращению аргумента, когда приращение аргумента стремится к нулю.
Ф-ия имеющая производную в каждой точке интервала называется дифференцируемой на этом интервале.
Геометрический смысл производной: пр-ая f `(x0) есть угловой коэфф. (tg угла наклона) касательной, проведённой к кривой y=f(x) в точке х0 , k=f ‘(x0)
у=f ‘(x0)(x - x0)
Механический смысл производной: пр-ая пути по времени s ‘(t0) есть скорость точки в момент t0: V(t0)=s ‘(t0)
Определение для любой точки
22 Производная алгебраической суммы конечного числа дифференцируемых ф-ий равна такой же сумме производных этих ф-ий
(u±v)`=u`± v`
Производная произведения двух дифференцируемых ф-ий равна произведению пр-ой первого сомножителя на второй плюс произведение первого сомножителя на про-ую второго:
(uv)`=u`v + uv`
Постоянный множитель можно выносить за знак
производной
(cu)`=cu`
Производная произведения нескольких
дифференцируемых ф-ий равна сумме произведений
производной каждого из сомножителей на все остальные
(uvw)`=u`vw+uv`w+uvw`
23 Производная частного двух ф-ий u(x)/v(x), если v(x)≠0
равна дроби, числитель которой есть разность произведений знаменателя дроби на производную числителя и числителя дроби на производную знаменателя есть квадрат прежнего знаменателя: (u/v)`=(u`v-uv`)/vІ; v≠0
(u/c)`=1/c*u`
(c/u)`=-cv`/vІ c=const
24 (xЄ)`=axЄˉ№
25 (LNx)`=1/x
(eЄ)`=eЄ
Для дифференцируемой ф-ии с производной, не равной
0, производная обратной ф-ии равна обратной величине
производной данной ф-ии
X`y = 1/Y`x
26 (sin x)`=cos x
(cos x)`=-sin x
(tg x)`=1/cosІx
(ctg x)`=-1/sinІx
27 Если y=f(u) и u=φ(x) – дифференцируемые ф-ии от своих аргументов, то производная сложной ф-ии существует и равна производной данной ф-ии по промежуточному аргументу и умноженной на производную самого промежуточного аргумента по незавмсимой переменной х
y`=f`(u)*u`
y=f(u(x)) Fx`=Fu`*Ux`
Пример:
y=(√x+5)і y`=?
y=uі, где u=√x+5
по формуле : y`=3u`*u`=3(√x+5)І(√x+5)`=3(√x+5)І/2√x
28 Дифференциалом ф-ии наз. линейная часть приращения ф-ии (относительно Δх), равная произведению производной на приращение независимой переменной.
dy=f`(x)Δx
Дифференциал независимой переменной равен приращению этой переменной.
Геометрический смысл: Дифференциал ф-ии есть приращение ординаты касательной, проведённой к графику ф-ии y=f(x) в данной точке когда х получает приращение Δх
29 При исследовании ф-ий используется следующий алгоритм:
1 ООФ, ОЗФ
2 Непрерывность ф-ии
3 Нахождение асимптот
4 Экстремумы и интервалы монотонности
5 Интервалы выпуклости и т. перегиба
6 Чётность нечётность, периодичность
7 Т. пересечения с Ох и Оу
(3)Если для некоторого х0 имеет место предел f(x)=∞ при
х→х0 то говорят, что х=х0 явл. вертикальн. асимптотой
f(x)
Если предел f(x)=b при x→∞ то говорят, что у=b явл.
горизонтальной асимптотой f(x)
Если предел f(x)/х=k при x→∞ (k≠0;k≠∞) и предел
(f(x)-kx)=b, то y=kx+b является наклонной асимпт-й
(4)Если производная ф-ии положительна (отрицательна)
внутри некоторого промежутка Х то ф-ия возрастает
(убывает) на этом промежутке
Если при переходе через т. х0 производная
дифференцируемой ф-ии меняет свой знак и в т. х0
равна 0 то х0-точка экстремума (минимума или
максимума)
(5)Точкой перегиба непрерывной ф-ии (f``(x)=0) наз. т. в
разделяющая интервалы, в которых ф-ия выпукла вниз и
вверх.
Ф-ия y=f(x) называется выпуклой внизу на интервале
(a;b) если f``(x)>0 на (a;b); ф-ия называется выпуклой
вверх на (a;b) если f``(x)<0 на (a;b)
30 Асимптотой графика ф-ии y=f(x) называется прямая, обладающая тем свойством, что расстояние от точки (х, f(x)) до этой прямой стремится к 0 при неограниченном удалении точки графика от начала координат.
Если для некоторого х0 имеет место предел f(x)=∞ при
х→х0 то говорят, что х=х0 явл. вертикальн. асимптотой
f(x). Вертикальные асимптоты следует искать в точках
разрыва ф-ии или на концах её ООФ (а; в) если аи в –
конечные числа
Если предел f(x)=b при x→∞ то говорят, что у=b явл.
горизонтальной асимптотой f(x)
Если предел f(x)/х=k при x→∞ (k≠0;k≠∞) и предел
(f(x)-kx)=b, то y=kx+b является наклонной асимпт-й
Наклонная асимптота как и горизонтальная может быть
правосторонней или левосторонней
31 Степенным рядом наз. ряд вида (1)∑ Bn*xЄ = b0+b1x+b2xІ…+baxЄ+… это ряд в котором членами являются ф-ии, в частности степенные. Совокупность тех значений х, при которых степнной ряд сходится, называется областью сходимости степнного ряда.
Ряд (1) наз. абсолютно сходящимся рядом, если сходится ряд (2) ∑ | bn |*| x |Є
Т1. Если ряд (2) сходится, то сходится и ряд (1)
Т2. Для любого степ. ряда (1) сущ-ет такое неотрицат. число R≥0 что этот ряд сходится абсолютно при | x |R; R – радиус сходимости ряда
Даламбер: lim | Bn+1 |/| Bn |<1 (n→∞) сходится
>1 (n→∞) расходится
32 Разложение ф-ий в ряд:
Если бесконечно дифференцируемая ф-ия f(x0)=a0
f`=A1+2A2(x-x0)+n*An(x-x0)Єˉ№
f(x)=f(x0)+f1(x0)(x-x0)+…+fЄ(x0)(x-x0)Є/a!
Рядом Тейлора ф-ии f(x) в окрестности т. х0 называется степ. рядом отн. разности (х-х0)
Особенно часто используется разложение ф-ии в ряд по степеням х, при этом х0=0; f(x)=f(0)+f`(0)+f Є(0)/a!*xЄ
Ряд Маклорена – частный случай ряда Тейлора
eЄ=1+x+xІ/2!+xі/3!+…+xЄ/a!+…
sin x=1+ x-xі/3+…+(-1)Є*(xІЄˉ№)/(2a+1)!+…
cos x=1-xІ/2!+x⁴/4!+…+(-1)ⁿ*xІⁿ/(2n)!+…
ln(1+x)=x-xІ/2+xі/3-…+(-1)ⁿxⁿ⁺№/n+1…
33 Ф-ия F(x) наз. первообразной для ф-ии f(x) если для всех х (из области определения) имеет место F`(x)≡f(x) нетрудно увидеть что если F(x) является первообразной для f(x) то и для F(x)+C также явл. первообразной.
Общий вид первообразной F(x)+C называется неопределённым интегралом от ф-ии f(x) обозначается F(x)+C=∫f(x)dx
dF(x)=F`(x)dx=f(x)dx
Св-ва неопр.∫
∫dF(x)=F(x)+C
(∫f(x)dx)`=f(x)
∫αf(x)dx=α∫f(x)dx
∫(f(x)±g(x))dx=∫f(x)dx±∫g(x)dx
Таблица интегралов
34 Метод замены переменных:
∫f(x)dx=∫f(φ(t))·φ`(t)dt → x=φ(t)
∫sin 5x dx=∫sin t 1/5dt=1/5∫sin t dt=-1/5 cost+C =-1/5cos 5x+C
5x=t; x=1/5t; dx=1/5 dt
35 Интегрир-ие по частям:
∫ U·dV=UV-∫VdU
Возможности применения связаны с тем, что дифференцир-ие может существенно упростить один из сомножителей (при условии что дифф-ие не слишком усложнит другой)
∫ xІ·sinx dx
xІ=U dU=2x dx
sin x dx =dV V=-cos x
∫ = xІ·sin x dx=-xІ·cos x -∫(-cos x)2x dx=-xІ·cos x+2∫x·cos x dx
x=U dU=dx
cos x dx=dV V=sin x
∫ = xІ·sin x dx=-xІcos x +2(x·sin x-∫sin x dx)= -xІ·cos x+2x·sin x +2cos x+C
36 Рациональной дробью называется ф-ия, равная отношению двух многочленов f(x)=Pm(x)/Qn(x), Pm(x)-многочлен степени m, Qn(x)- многочлен степени n.
Рациональная дробь наз. правильной если степень числителя меньше степени знаменателя, т.е. mИнтегрирование дробей методом разложения на элементарные дроби:
1 Если дробь неправильна, то представить ее в виде суммы многочлена и правильной дроби.
2 Разложив знаменатель дроби на множители, представить её в виде суммы простейших рац. дробей.
3 Проинтегрировать многочлен и полученную сумму простейших дробей.
37 Определённым интегралом от ф-ии f(x) на отрезке (a; b) называется предел интегральной суммы Sn, когда n→∞ (Δxi→0)
Cв-ва опр. интеграла:
(все интегралы на отрезке от А до В)
1 ∫С·f(x)dx=C·∫f(x)dx
2 ∫(f(x)±g(x))dx=∫f(x)dx±∫g(x)dx
3 ∫f(x)dx=-∫f(x)dx
4 Если f(x)≤g(x) на (A,B), то ∫f(x)dx≤∫g(x)dx
5 Если на (А,В) m=minf(x) M=maxf(x)то m(B-
-A)≤∫f(x)dx≤M(B-A)
6 Если f(x) непрерывна на (A,B) то сущ. также точка
С∈(A;B) ∫f(x)dx=f(C)·(B-A)
7 Если f(x) непрерывна на (А,В) то ∫f(x)dx существует
8 ∫f(x)dx=∫(a→d)f(x)dx+∫(d→b)f(x)dx
9 Формула Ньютона-Лейбница:
∫f(x)dx=F(B)-F(A)→F`(x)=f(x)
38 Применение опр. ∫
1 Вычисление площадей (Н-Лейб)
Если на (А,В) f(x)>0 то S=∫f(x)dx
Если на (А,В) f(x)<0 то S=-∫f(x)dx
Если на (А,В) f(x)>g(x) то S=∫(f(x)-g(x))dx
(действительно для всех вариантов расп. ф-ий)
2 Вычисление объёмов тел вращения
V=π∫fІ(x)dx
39 Приближ. вычисление интегралов
1 Формула Н-Лейб.
2 Метод прямоугольника
(B-A)/n=h: ∫(A→B)f(x)dx~=h(f1+f2…+fn)
3 Формула трапеции ∫f(x)dx~=h(1/2·f0+f1+f2+…fn)
4 Формула Симпсона
n-чётное
∫f(x(dx=(B-A)/3n(f0+4f1+2f2+4f3+2f4+…+4fn-1+fn)
40 Несобственные ∫ бывают 2-х видов:
∫-ы вида ∫(a;+∞)f(x)dx; ∫(-∞;b)f(x)dx; ∫(-∞;+∞)f(x)dx
называются несобственными ∫-и 1-го рода
Если сущ. предел (b→∞) ∫(a;b)f(x)dx=C (C≠∞) то интеграл сходится и наоборот.
Пусть есть числовой ряд ∑Ax=A0+A1+…An+… и пусть есть ф-ия f(x)=Ax на интервале ( a:b) Тогда ряд и несобственный ∫(a;∞)f(x)dx сходятся или расходятся одновременно
Если lim (x→b)f(x)=∞ или lim(x→a)f(x)=∞ то ∫f(x)dx наз. несобственным интегралом 2-го рода, он сходится если сущ. конечный предел
lim ∫(a; b-δ)f(x)dx
δ→0
41 Пусть имеется n переменных величин, и каждому набору их значений (x1,x2,x3…xn) из некоторого мн-ва Х соответствует одно вполне определённое значение переменной величины Z. Тогда говорят,что задана ф-ия нескольких переменных Z=f(x1…xn)
Если сущ-ет lim(Δx→0)f(x+Δx,y)-f(x,y)/Δx=fx`(x,y) то он называется частной производной по переменной х.
Если сущ-ет lim(Δy→0)f(x,y+Δy)-f(x,y)/Δy=fy`(x,y) то он называется частной производной по переменной y
Величина dZ=f`x(x;y)dx+f`y(x;y)dy называется дифференциалом от ф-ии f(x;y)
Z=f(x1+x2+…xn)dZ=f`x1·dx1+f`x2·dx2+…+f`xn·dxn
Дифференциалом ф-ии называется сумма произведений частных производных на приращение соответствующих независимых переменных.
42 Если Z=f(x;y) имеет в точке (х0;у0) экстремум (локальный) и ф-ия дифференцируема (т.е. имеет частные произв-ые) то частные произв-ые в этой т. равны 0.
43 Формулы служащие для аналитического представления опытных данных получили название эмпирических формул
Этапы вывода ЭФ:
1 Установить вид зависимости (линейная, квадратичная, логарифмическая и т.д.)
2 Определение известных параметров этой ф-ии
Для линейной зависимости сущ-ет метод наименьших
квадратов
44 ДУ называют ур-ие, связывающее искомую ф-ию одной или нескольких переменных, эти переменные, и производные различных порядков данной ф-ии.
Решением ДУ называется такая ф-ия, котю при подстановке её в это ур-ие обращает его в тождество.
ДУ первого порядка наз. ур-ие содержащее переменную х, неизвестную ф-ию y=f(x) и её производную y`=f`(x)
ДУ первого порядка наз. ур-ем с разделяющимися переменными, если оно м/б представленно в виде
dy/dx=f(x)g(y)
Для решения такого ур-ия его следует преобразовать к виду, в котором дифференциал и ф-ии переменной х окажутся в одной части равенства, а переменной у – в другой. Затем проинтегрировать обе части полученного рав-ва:
dy/g(y)=f(x)·dx → ∫ dy/g(y)=∫ f(x)·dx
f(x) | f`(x) | f(x) | f`(x) |
c | 0 | xЄ | axЄˉ№ |
x | 1 | xІ | 2x |
√x | 2√x | arccos x | -1/√1-xІ |x|<1 |
1/x | -1/xІ | arctg x | 1/1+xІ |
eⁿ | eⁿ | arcctg x | -1/1+xІ |
aⁿ | aⁿln a | sh x | ch x |
ln x | 1/x | ch x | sh x |
LOGaX | 1/x·ln a | th x | 1/chІx |
sin x | cos x | cth x | -1/shІx |
cos x | -sinx | ln(x+√(xІ+1)) | 1/√(1+xІ) |
tg x | 1/cosІx | arcsin x | 1/√(1-xІ) |
ctg x | -1/sinІx |
|
|
|
|
|
|
|
f(x) | F(x)+C |
0 | C |
1 | x+C |
x | xІ/2+C |
xЄ | xЄ⁺№/a+1+C a≠1 |
1/x | ln| x |+C |
1/xІ | -1/x+C |
1/xі | 1/2xІ+C |
1/(1+xІ) | arctg x+C |
1/aІ+xІ | 1/a·arctg x/a+C a≠0 |
1/1-xІ | 1/2·ln| (1+x)/(1-x) |+C |
1/aІ-xІ | 1/2a·ln| (a+x)/(a-x) |+C a≠0 |
x/xІ+a | 1/2·ln| xІ+a |+C |
1/√(1-xІ) | arcsin x+C |
1/√(aІ-xІ) | arcsin x/a+C |
eⁿ | eⁿ |
aⁿ | aⁿ/ln a |
ln x | x ln x –x +C |
sin x | -cos x+C |
cos x | sin x+C |
tg x | -ln | cos x |+C |
ctg x | ln | sin x |+C |
1/cosІx | tg x+C |
1/sinІx | -ctg x+C |
Понятие числа (от натур. до комплексного)
Сложение, вычитание, *, / для комплексного числа
Тригонометрическая форма комплексного числа
Возведение в степень комплексного числа
Извлечение Є из комплексного числа
Последовательность и её предел
Св-во сходящихся последовательностей (док-во)
БМВ и ограниченная последовательность. Св-ва БМВ
Знакоположительный ряд и его сходимость (пример)
Признак сравнения двух знакоположительных рядов (примеры)
Признаки Даламбера и Коши
Знакопеременный ряд. Признак Лейбница (пример)
Прямая и обратная функция (примеры)
Предел ф-ии в точке
Непрерывность ф-ии в точке. Св-ва непрерывных ф-ий
Непрерывность линейной и степенной ф-ий
Непрерывность ф-ий ВЄ и LOGaX
Непрерывность тригонометрической ф-ии
1-ый замечательный предел
2-ой замечательный предел и его применение для
начисления непрерывных %
Понятие производной от ф-ии. Геометрический и механический
смысл призводной
Понятие пр-ой. Пр-ая от +, -, * двух ф-ий
Понятие пр-ой. Пр-ая от / двух ф-ий
Понятие пр-ой. Пр-ая от ХЄ
Понятие пр-ой. Пр-ая от обратных ф-ий (LNx, eЄ)
Пр-ая от тригонометрической ф-ии.
Пр-ая от сложной ф-ии (пример)
Понятие дифференциала ф-ии. Его геометр. смысл
Исследование ф-ий с помощью пр-ой и пределов.
Понятие асимптот и их нахождение
Степенной ряд и область его сходимости
Разложение ф-ий в степенные ряды
Неопределённый интеграл. Табл. Интегралов
Метод интегрир-ия с помощью замены переменных (примеры)
Интегрирование по частям
Интегрир-ие с помощью разложения на элементарнве дроби
Определённый интеграл и его св-ва. Формула Ньютона-Лейбница
Применение опр. интегралов
Приближённый метод вычисления опр. интегралов
Несобственные интегралы
Ф-ии нескольких переменных. Понятие частных пр-ых и дифференциала
Экстремум ф-ий нескольких переменных
Понятие об эмпирических формулах. Метод наименьших квадратов.
44 Понятие ДУ и методы его решения.