Атлантический океан: биогеоценоз и экологические проблемы
Атлантический океан — самый изученный и освоенный людьми из всех океанов. Свое название он получил по имени титана Атланта (по греческой мифологии, держащего на своих плечах небесный свод). В разное время его называли по-разному: "Море за Геракловыми столбами", "Атлантик", "Западный океан", "Море мрака" и т.д. Название "Атлантический океан" впервые появилось в 1507 году на карте Вальд-Земюллера, с тех пор название утвердилось в географии.
Границы Атлантического океана по берегам 4-х континентов (Евразии, Африки и обеих Америк) — естественные, с океанами — условные: на севере с Северным Ледовитым океаном, на западе и востоке соответственно с Тихим и Индийским океанами. Принцип проведения границ у ряда авторов разный: А. В. Гембель считает, что наиболее репрезентативными являются границы, проведенные по гидрологическим данным (водному балансу, солености; температуре и динамике вод). Однако отсутствие достаточного количества данных в целом ряде регионов не позволяет учитывать эти факторы и проводить по ним границы. Поэтому, чаще всего границы проводят по орографическим единицам: подводным плато, хребтам, мелям, островам, где таловых нет — по локсодромии. Т.е. линии, секущей меридианы под одним и тем же углом. Граница с Северным Ледовитым океаном обычно проводится по 70° с.ш. Баффинова Земля — остров Диско, мыс Брустер (Гренландия) — 61° с.ш. на Скандинавском полуострове; граница с Тихим океаном остров Осте (Огненная Земля) к мысу Штернек (Антарктида); граница с Индийским океаном — мыс Игольный, и по 20° в.д. к Антарктиде. Остальные границы — сухопутные, по береговой линии материков. Приведенные выше границы взяты из Атласов океанов, издательства Министерства обороны СССР и ВМФ, 1980 год, они официально приняты в нашей стране. В обозначенных границах площадь океана составляет 93,4 млн. км2, объем воды 322,7 млн. км2. Обмен воды происходит за 46 лет, что в 2 раза быстрее, чем в Тихом.
Значительная роль Атлантики в жизни людей во многом объясняется чисто географическими обстоятельствами: его большой протяженностью (от Арктики до Антарктики) между 4-мя материками. Он разъединяет платформенные структуры на континентах, географически удобные для поселения людей. В океан впадают крупные и средние реки (Амазонка, Конго, Нигер, Миссисипи, Святого Лаврентия и другие), которые служили и служат естественными путями сообщения; изрезанность береговой линии Европы, наличие Мексиканского залива, Средиземного моря, также способствовали развитию мореплавания и освоению океана. Атлантический океан имеет несколько средиземных морей (Балтийское, Средиземное, Черное, Мраморное, Азовское) и 3 крупных залива: Мексиканский, Бискайский и Гвинейский. В океане имеются острова и архипелаги (правда, значительно меньших размеров, чем в других океанах). Особенно большие скопления островов находятся у берегов Центральной Америки: Большие и Малые Антильские, Багамские; у берегов Южной Америки — Фолклендские. В южной части океана — Южные Оркнейские и Южные Сандвичевы; у берегов Африки — Канарские, Зеленого Мыса, Азорские, Мадейра, Принсипи, Сан-Томе и др. Крупнейшие острова у берегов Европы: Великобритания, Ирландия. В осевой зоне океана острова Исландия, Вознесения, Св. Елены.
2. Краткая физико-географическая характеристика.
2.1. Климат.
Климатические условия Атлантики во многом определяются его большой меридиональной протяженностью, особенностями формирования барического поля. Своеобразием конфигурации акватории больше в умеренных широтах, чем в экваториально-тропических. На северной и южной окраине находятся огромные регионы охлаждения и формирования очагов высокого атмосферного давления Гренландского и Арктического бассейнов, Антарктиды — на юге. Из-за мощного центра охлаждения — антарктиды, Южное полушарие в значительной мере холоднее северного, термический экватор над Атлантикой, как и для планеты, смещен в Северное полушарие. В северной части Океана расположен Исландский минимум, особенно активный глубокий в зимнее время, он определяет характер погоды не только над океаном, но на значительной территории Евразии. Расположенный южнее Северо-Атлантический (Азорский) максимум наиболее активен летом, в нем формируется морской топический воздух. В приэкваториальных широтах — над яйцами максимального нагрева и пониженного давления постоянно формируется масса теплого и очень влажного воздуха. В Южном полушарии центром высокого давления в субтропических широтах является Южно-Атлантический максимум, в умеренных и субтропических широтах — зона пониженного давления, а над Антарктидой область постоянно высокого давления, во многом определяющая погоду в прилегающих районах океана. От субтропических максимумов к экватору под углом к экватору дуют пассаты: северо-восточного направления в Северном полушарии и юго-восточного — в Южном. Устойчивость направления этих ветров до 80% в год, сила ветров более изменчива и составляет 1-7 баллов. В умеренных широтах обоих полушарий господствуют ветры западных составляющих, со значительными скоростями, в Южном полушарии часто переходящие в шторм — "ревущие сороковые".
Распределение атмосферного давления и характер воздушных масс влияет на характер облачности, режим и количество атмосферных осадков. Облачность над океаном имеет, как правило, зональную структуру: максимальное количество у экватора с преобладанием кучевых и кучево-дождевых форм. Тропические и субтропические широты имеют наименьшую облачность. В умеренных широтах количество облаков вновь возрастает, и господствуют здесь слоистые и слоисто-дождевые формы.
О количестве атмосферных осадков над Северной Атлантикой можно судить по данным таблицы 1.
Широты | Количество осадков (мм) |
Полярные | 250 |
Средние | 1500 |
Тропические | От 100 на востоке до 500 на западе |
Экваториальные | 2000 |
Очень характерным явлением для умеренных широт обоих полушарий (особенно Северного) являются густые туманы, образующиеся при соприкосновении теплых воздушных масс и холодных вод океана, а также при встрече холодных и теплых вод у острова Ньюфаундленд. Особенно густые летние туманы в этом районе осложняют навигацию, нередко там встречаются айсберги. В тропических широтах туманы наиболее вероятны у островов Зеленого Мыса, где пыль, выносимая из Сахары, служит ядрами конденсации для водяного пара атмосферы.
Очень опасным явлением в тропических широтах - океана бывают тропические циклоны, вызывающие ураганные ветры и сильные ливни. В последнее десятилетие было обнаружено, что тропические циклоны развиваются между 6-20 градусами по обе стороны от экватора. Они имеют четко выраженный годовой ход, в среднем формируется до 9 вихрей в год.
Повторяемость тропических циклонов над Атлантическим океаном (Северное полушарие 1899-1971 гг.)
Таблица 2
Месяц | |||||||||||||
Число месяцев | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | Год |
--- | --- | --- | --- | 0.2 | 0.7 | 0.8 | 2.5 | 4.3 | 2.6 | 0.7 | 0.1 | 9.4 |
(по Л. С. Минкиной и Н. А. Безрукову)
Тропические циклоны часто развиваются из небольших депрессий, смещающихся с Африканского континента на Атлантический океан, набирая силу, они очень опасны для островов Вест-Индии и юга Северной Америки.
2.2.Температура.
Атлантический океан из-за большой протяженности с севера на юг, узости в районе экватора и связи с Северным Ледовитым океаном, в целом на поверхности холоднее Тихого и Индийского океанов. Средняя температура воды на поверхности +16,9°, в то время как в Тихом +19,1°, Индийском +17°. Отличается и средняя температура толщи всей водной массы Северного и Южного полушарий. Благодаря Гольфстриму средняя температура воды Северной Атлантики 11+6,3°, южной +5,6°. В целом же, как и в других океанах, температура поверхностных вод понижается от экватора к полюсам, а также с запада на восток. Наличие теплых течений поддерживает температуру воды на западе океана на 20° с.ш. 27°, в то время как на востоке всего 19°. Хорошо прослеживаются и сезонные изменения температур. Самая низкая температура регистрируется в феврале на севере и в августе на юге океана, а самая высокая — наоборот. Суточные же колебания температур поверхностного слоя невелики, в тропиках они составляют 0,4°, в более высоких широтах — 0,5° по Цельсию. Годовая амплитуда температур у экватора не более 3°, в субтропических и умеренных широтах 5-8°, в полярных 4° по Цельсию. Значителен горизонтальный градиент температур поверхностного слоя в местах встречи холодных и теплых течений. Например, Восточно-Гренландского и Ирмингера, где разница температур в 7° в радиусе 20-30 км обычное явление.
Годовые колебания температур четко прослеживаются в поверхностном слое до 300-400 м. До глубины 1000 м очень малы, а глубже 1000 м совсем ничтожны.
Изменение температур воды с глубиной в Северной Атлантике представлено в таблице 3
Таблица 3
Глубины (м) | Место и месяц измерения (°С) | ||
61° 06' с.ш. 3°12' в.д. август | 29° 56' с.ш. 59° 33' д. Июль | 30° 32' с.ш. 26°01'. з.д. август | |
0 | 12,35 | 22,65 | 27,49 |
50 | 8,38 | 20,65 | 27,51 |
100 | 7,49 | 19,36 | 18,23 |
400 | 2,05 | 17,06 | 7,85 |
600 | 0,40 | 14,30 | 5,49 |
1000 | 0,85 | 6,73 | 4,46 |
2000 | — | 3,70 | 3,55 |
3000 | — | 2,91 | 2,68 |
5000 | — | 2,14 | — |
(по А. Циргофферу)
В последнее десятилетие в науке появилось новое направление: изучение влияния аномалий температур океанических вод на погоду Европы, в частности. По предложению академика Г.И. Марчука наблюдения проводились в небольших регионах. Там, где наиболее активно и интенсивно происходит теплообмен между океаном и атмосферой. Они получили название ЭАЗов — энергетически активные зоны. В Атлантике выделено 4 типа зон: Норвежская, Ньюфаундленская, зона Гольфстрима, Атлантическая тропическая. 4 раза в год проводятся наблюдения на полигоне размером 1500х2000 км. Программу выполняют научно-исследовательские суда экспедиционного флота нашей страны. По результатам работ установлено, что наибольшее взаимодействие в системе океан—атмосфера происходит в зимнее полугодие. Все параметры замеров с помощью зондов многоразового и одноразового действия поступают на ЭВМ где, и они обрабатываются.
2.3.Соленость.
Атлантический океан самый соленый из всех океанов. Содержание солей в водах Атлантики составляет в среднем 35,4%, что больше, чем соленость Тихого, Индийского и Северного Ледовитого океанов. Распределение солености не всегда является зональной, во многом она зависит от ряда причин: количества и режима атмосферных осадков, испарения, притока вод из других широт с течениями и количества пресных вод, доставляемых реками. Самая высокая соленость наблюдается в тропических широтах (по Гембелю) — 37,9%, в Северной Атлантике между 20 и 30° с.ш., в Южной между 20 и 25° ю. ш. Здесь господствует пассатная циркуляция, мало осадков, испарение же составляет слой в 3 м. Пресных вод почти не поступает. Несколько больше солёность и в умеренных широтах Северного полушария, куда устремляются воды Северо-Атлантического течения. Соленость в приэкваториальных широтах 35%. Прослеживается изменение солености с глубиной: на глубине 100-200 м она составляет 35%, что связано с подповерхностным течением Ломоносова. Установлено, что соленость поверхностного слоя не совпадает в ряде случаев с соленостью на глубине. Резко падает соленость и при встрече различных по температуре течений. Например, южнее острова Ньюфаундленд, при встрече Гольфстрима и Лабрадорского течения на незначительном расстоянии соленость падает от 35% до 31-32%. Интересной особенностью Атлантического океана является существование в нем пресных подземных вод — субмаринные источники (по И. С. Зецкеру). Один из них давно известен морякам, он расположен восточнее полуострова Флорида, где корабли пополняют запасы пресной воды; это 90-метровое "пресное окно" в соленом океане. Вода поднимается на поверхность и бьет на глубине 40 м. Это типичное явление разгрузки подъемного источника в области тектонических нарушений или районах развития карста. (На Флориде есть карст). Когда напор подземных вод превышает давление столба морской воды, происходит разгрузка — излияние подземных вод на поверхность. Недавно была пробурена скважина на материковом склоне Мексиканского залива у берегов Флориды, в 48 км от города Джонсонвилл. Пробурили скважину на глубине 250 м, вырвался столб воды высотой в 9 м, вода была пресной. Поиски и исследование субмаринных источников только начинаются.
2.4. Биология.
Атлантический океан — часть Мирового океана, и основные особенности его биологической структуры, естественно, подчиняются глобальным закономерностям пространственного распределения жизни, общим с другими океанами. Некоторые специфические черты биологии Атлантического океана определяются такими его особенностями, как наибольшая среди других океанов меридиональная протяженность и наименьшая ширина; относительно наиболее развитый шельф (около 10% площади); наличие больших придаточных бассейнов средиземноморского типа (Мексиканский залив, Карибское море, система Средиземного моря); мощное развитие Гольфстрима, оказывающего огромное влияние на всю Северную Атлантику; интенсивность меридионального переноса глубинных вод; четкая выраженность субтропических апвеллингов у восточных берегов.
3. Количественное распределение жизни.
3.1. Фитопланктон и первичная продукция.
В составе фитопланктона (одиночные и колониальные пелагические водоросли) почти повсюду, как и в других районах Мирового океана, по числу клеток и биомассе доминируют диатомовые водоросли, но в тропической зоне важное количественное значение принадлежит также перидинеям и кокколитофоридам. Количественное распределение фитопланктона соответствует циркумконтинентальной и шпротной зональности океана, но существенно различается в основных биогеоценозах эпипелагиали(1). Наибольшая численность и биомасса планктонных водорослей наблюдаются в неритических водах, особенно там, где имеет место обогащение поверхностных горизонтов биогенными элементами в результате сезонных процессов (умеренные широты обоих полушарий), прибрежных апвеллингов (северо-западная и юго-западная Африка, банка Кампече в Мексиканском заливе) или речного стока (предустьевые участки Амазонки и Конго). При этом в средних широтах, где наиболее явно выражена биологическая сезонность, различия в численности и биомассе водорослей очень велики. В тропической зоне с круглогодичной вегетацией фитопланктона максимальная биомасса превышает минимальную только в 4—10 раз, а нередко и меньше.
В открытом океане фитопланктона, как правило, заметно меньше, чем у берегов, и здесь особенно четко проявляется широтная зональность в распределении его количественных показателей. В арктических и антарктических районах биомасса фитопланктона обычно довольно низка. Биомасса водорослей заметно повышается в средних широтах обоих полушарий (10 г/м3 и более), затем достигает минимума в центральных круговоротах (часто всего лишь 0.001 г/м3) и вновь повышается (до 0.1 г/м3 и более) у экватора.
В целом акватория океана разделяется на олиготрофные и эвтрофные участки, границы которых могут быть грубо проведены по изолиниям среднегодовой численности клеток водорослей, равным 10 кл/л (что примерно соответствует средней биомассе 0.001 г/м3); районирование эвтрофных вод может быть дробным (Семина, 1977а).
Продуцирование органического вещества фитопланктоном определяется интенсивностью фотосинтеза, зависящего от поступления доступной водорослям части солнечной радиации и условий снабжения верхних горизонтов океана биогенными элементами. Распределение первичной продукции по акватории океана во многом сходно с районированием по количеству фитопланктона и отличается от последнего лишь некоторыми деталями. Самыми продуктивными являются районы, характеризующиеся наиболее быстрой регенерацией биогенов, а именно зоны прибрежных подъемов вод, дивергенций течений и часто повторяющихся сгонных явлений (побережье северо-западной и юго-западной Африки, юго-восточное побережье Южной Америки и др.), а также некоторые внутренние моря (Азовское, Северное, отдельные участки Мексиканского залива; Кобленц-Мишке, 1977). Суточные величины первичной продукции варьируют от 0.02—0.03 г с/м3 в срединных частях центральных круговоротов (например, в Саргассовом море) до 3—5 г с/м3 у берегов Намибии. Средняя для всего океана первичная продукция составляет 0.19 г с/м3/сут (Кобленц-Мишке и др., 1970), а суммарная годовая продукция углерода достигает 7.3-103 т (из 23-10° т, ежегодно продуцируемых во всем Мировом океане). Продукция донных водорослей — лтакрофитов — и цветковых растений выражается величиной, на два порядка меньшей (Возжинская, 1977), и может не приниматься во внимание.
В пространственном распределении первичной продукции, как и в распределении других количественных биологических характеристик, отчетливо заметны оба типа зональности — широтная и циркумконтинентальная.
3.2. Зоопланктон и вторичная продукция.
Органическое вещество, продуцируемое водорослями, а также вторичное органическое вещество, синтезируемое морскими бактериями детрита, представляет собой основу дальнейшего развития жизни в океане и распределяется по сложной системе трофических связей. Поток энергии идет от фитопланктона и бактерий к растительноядному зоопланктону, а затем через хищный планктон нескольких трофических уровней к нектонным рыбам, кальмарам и китообразным. Биомасса мезопланктона (его основу составляют пелагические ракообразные, прежде всего копеподы) в верхнем продуцирующем слое(2) в высоких и средних широтах сильно варьирует по биологическим сезонам, достигая максимума в летнее время (на карте в этих районах показаны именно наибольшие значения), а в тропических и экваториальных водах она слабо изменяется в течение года. Наибольшие показатели биомассы (до 0.3—0.5 г/м3 и больше) отмечаются в умеренных широтах Северного полушария — в Северном море, в районе банки Джорджес. Это объясняется интенсивной зимней эвтрофикацией поверхностных горизонтов и быстрым перемешиванием вод с наступлением биологической весны, начинающейся в марте—июле (чем дальше к северу, тем позже) и сопровождающейся резкой вспышкой численности планктона. Аналогичная картина имеет место на юге океана — в Субантарктике, где также регистрировались отдельные значения биомассы порядка 0.3—0.4 г/м3, хотя осредненные для летнего сезона цифры (0.1—0.2 г/м3) заметно ниже. Эти показатели, как отмечается Н. М. Ворониной (1975), обусловлены разновременностью сезонных процессов в этой широтной зоне, в результате чего концентрация разных видов зоопланктона у поверхности происходит со сдвигом во времени и недостаточно характеризует ее истинную продуктивность. Высокие значения биомассы наблюдаются также в районах интенсивных апвеллингов у берегов Африки—до 0.5—1.2 г/м3, у Намибии, в локальном районе над банкой Кампече — 0.3—0.5 г/м3, на Патагонском шельфе. Самые низкие значения показателей характерны для срединных частей центральных круговоротов (0.01—0.25 г/м3) и Средиземного моря (Богоров и др., 1968). Таким образом, в количественном распределении зоопланктона вполне очевидны все главные черты биологической зональности океана.
Приведенные выше цифры относятся только к мезопланктону и не учитывают более крупных животных (длиной свыше 3 см), объединяемых в категорию макропланктона, или микронектона (эвфаузииды, креветки, мелкие рыбы и головоногие, а также медузы, гребневики, сифонофоры, сальпы и др.). Распределение биомассы этих животных по площади океана не поддается пока картированию в связи с трудностями их количественного облова. Имеющиеся данные показывают, однако, что макропланктон на средних глубинах составляет в разных районах от 15 до 35% массы мезопланктона даже без учета кишечно-полостных и оболочников (Шарин, Несис, 1977).
Сравнивая биомассы фито- и зоопланктона, можно заметить, что цифры, характеризующие их количественное распределение, близки по величине, а во многих участках океана концентрации планктонных животных даже выше, чем водорослей. Иные результаты получаются при сравнении первичной и вторичной продукции, так как в течение года число генераций фитопланктона гораздо больше, нежели зоопланктеров, поэтому и отношение продукции к биомассе (коэффициент Р/В) у фитопланктона значительно выше, оно составляет около 400 по сравнению с 2.5—4 в среднем для зоопланктона (Моисеев, 1969). Суммарная вторичная продукция океана, по-видимому, примерно в 10 раз меньше его первичной продукции.
3.3. Бентос.
Важнейшая закономерность в количественном распределении бентоса состоит в общем, убывании его биомассы с глубиной, причем на литорали и сублиторали очень резко выражена неравномерность в распределении количественных характеристик по площади в соответствии с неравномерностью отложения детрита — основного источника питания донных животных. Приводимая карта(3) показывает преимущественно распределение биомассы глубже 2000 м, так как точные данные по меньшим глубинам для многих районов Атлантического океана отсутствуют.
Об обилии бентоса на шельфе дают представление следующие цифры: у берегов Восточной Гренландии на глубине 10—300 м он составляет 20—1960 г/м2, у берегов Намибии—100—150 г/м2, на шельфе Южной Америки—20—200 г/м2 и т. д. (Марти, Мартинсен, 1969). Очень высокими показателями характеризуется биомасса донных водорослей – макрофитов — бурых (фукусовых, ламинариевых и др.), в меньшей степени зеленых и красных, а также морских трав. В умеренных широтах масса водорослей составляет в среднем около 35 кг/м2, но может достигать и более высоких значений (сотни килограммов на 1 м2), в тропической зоне она, как правило, не превышает 1—2 кг/м2 (Возжинская, 1977).
В количественном распределении бентоса явственно проявляется циркумконтинентальная зональность, выражающаяся в повышенной биомассе донных животных вдоль берегов всех континентов и у крупных островов (Гренландия, Исландия). Этот эвтрофный периферический «пояс» связан не только с шельфом и материковым склоном, он распространяется также и на прилегающие участки ложа океана — «прибрежную» абиссаль, в которой биомасса обычно гораздо больше, чем на сходных глубинах в открытом океане (Филатова, 1977).
В океанической абиссали распределение бентоса подчиняется правилам широтной зональности. Наименьшие значения биомассы — 0.005 г/м2 и ниже — зарегистрированы в олиготрофных районах в границах центральных круговоротов обоих полушарий. В экваториальной зоне биомасса возрастает в 10 раз (0.054 г/м2), но особенно высока она за пределами тропиков — между 50° и 65° с. ш., например, ее значения выражаются цифрами 1—5 г/м2 и больше.
Общая картина количественного распределения бентоса находится в прямой зависимости от различий в продуктивности поверхностных вод океана, так как исходным источником пищи для всех донных животных служит население пелагиали. Органическое вещество, продуцируемое в верхних горизонтах и перераспределенное в толще воды, попадает на дно в результате процессов седиментации и осадконакопления, и количественные различия в поступлении этого вещества определяют трофические условия существования донной фауны. Как указано выше, олиготрофные участки, расположенные в центральных круговоротах, и окружающие их по периферии эвтрофные участки сильно различаются по биомассе бентоса. Биомасса донных животных в желобах Пуэрто-Рико, Кайман и Романш, находящихся в малопродуктивных районах, всего 0.03—0.59 г/м2, что на 2—3 порядка меньше, чем в Южно - Сандвичевом жёлобе — 8.88 г/м2.
3.4. Нектон и конечная (хозяйственно ценная) продукция.
Особый практический интерес представляет количественное распределение нектона — группы, объединяющей среднеразмерных и крупных рыб и головоногих моллюсков, а также морских млекопитающих и рептилий, которые занимают верхние ступени трофической пирамиды. Нектон представляет собой основу современного промысла водных организмов и определяет преобладающую часть хозяйственно ценной продукции океана.
Нужно отметить, что абсолютная количественная оценка биомассы нектона достаточно трудна (особенно это касается открытого океана), и более или менее точные цифры относятся только к районам развитого рыболовства. Карта распределения хозяйственно ценной продукции в Атлантическом океане(4), составленная на основе анализа промысловых уловов, показывает, что обилие нектона в целом неплохо соответствует основным закономерностям пространственного распределения фитопланктона, зоопланктона и бентоса. Прежде всего, обращает внимание повышенная продуктивность циркумконтинентальных районов по сравнению с открытыми водами океана. Наиболее продуктивны по нектону (уловы 3—5 т/км2 в год и выше) зоны прибрежных апвеллингов у берегов юго-западной и северо-западной Африки, Ньюфаундлендского мелководья, Северного моря, шельфа побережья США и Южной Америки к югу от 20° ю. ш.; повышенной продуктивностью характеризуются и отдельные участки в других прибрежных районах. Самая низкая продуктивность отмечается в центральных круговоротах тропической зоны. Средняя продуктивность нектона в океане, по подсчетам П. А. Моисеева (1969), Ю. Ю. Марта и Г. В. Мартинсона (1969), в настоящее время составляет 220—250 кг/км2, а продуктивность нектона на шельфе и в прилегающих районах — 740 кг/км2, что значительно выше аналогичных показателей для Тихого и Индийского океанов. Преобладающую часть этой продукции дают рыбы — планктофаги (сельдевые, некоторые тресковые, анчоусы, ставриды, скумбрии), тогда как значение бентофагов и хищников-ихтиофагов значительно ниже. В открытых водах тропической зоны вся продукция представлена тунцами и другими объектами ярусного промысла. Роль китообразных в формировании хозяйственно ценной продукции в настоящее время повсюду ничтожно мала. Географическое распределение продукции нектона, в общем, очень сходно с распределением первичной продукции. Имеющиеся несоответствия объяснимы, во-первых, разной степенью трансформации органического вещества в пищевых цепях в разных районах и, во-вторых, неравномерным размещением современного рыболовства, недостаточно полно использующего ресурсы отдельных участков океана (например, ресурсы Патагонского шельфа; Марти, 1977).
4. Вертикальное распределение жизни.
Географический подход к вертикальному распределению жизни в океане включает такие разные аспекты, как: 1) региональная изменчивость вертикальной фаунистической структуры в пелагнали и бентали и 2) региональная изменчивость количественного распределения организмов по вертикали. В обоих случаях основные различия прямым образом связаны с климатической (широтной) и циркумконтинентальной зональностью. Пелагические сообщества открытого океана составляют два главных типа—тепловодный и холодноводный (Беклемишев, 1969). Наиболее существенное различие между ними состоит в том, что тропическая мезопелагиаль приурочена к достаточно мощному (толщиной около 1000 м) слою со значительным вертикальным градиентом температуры, а внетропическая находится в более узком (порядка 500 м) и почти однородном по температуре слое. В связи с этим только в тропиках происходят суточные вертикальные миграции животных, достигающие большой амплитуды. С различиями в гидрологических структурах связаны и фаунистические различия по вертикали: во внетропической зоне и в тропических водах границы мезо - и батипелагиали находятся на разных глубинах. Смещение этих границ происходит и под влиянием вертикального переноса вод, в частности в зонах дивергенции и апвеллингов.
Границы вертикальных фаунистических зон бентали также меняют свое положение в зависимости от факторов среды (Беляев, 1977). В тропических районах верхние границы батиали и абиссали смещены на значительно большую глубину, чем в средних широтах (Menzies et а1„ l973). Ниже рассматриваются некоторые особенности вертикального количественного распределения планктона, бентоса и нектона в разных широтных зонах.
4.1. Фитопланктон.
Планктонные водоросли нормально живут и размножаются только в слое воды, расположенном выше глубины компенсационной точки — освещенности, при которой интенсивность фотосинтеза и затраты на дыхание фитопланктона одинаковы. В то же время нижняя граница биотопа растительной части планктонного сообщества определяется положением подстилающего слоя с повышенным градиентом плотности (основного цикноклина); водоросли, попадающие глубже, даже оставаясь живыми, уже не участвуют в создании первичной продукции.
Наиболее богат фитопланктоном верхний слой океана, называемый трофогенным, однако в пределах всего биотопа повышенные концентрации могут встречаться на любых глубинах, и, как правило, богатые водорослями слои чередуются с бедными. Толщина трофогенного слоя варьирует от 5—1.0 до 200 и более метров (Сомина, 19776). В прибрежных районах он в среднем тоньше, чем в открытых водах. В тропической зоне трофогенный слой занимает всю толщу до основного никноклипа. В юго-восточной части тропической Атлантики между 8—17° ю. ш., например, его средняя толщина 34 м при положении основного пикпоклина между 24 и 44м. В высоких и умеренных широтах граница биотопа фитопланктона обычно располагается на глубинах 90—120 м, но в пределах этого слоя в течение большей части вегетационного периода существует значительная неравномерность в распределении водорослей. Весной и летом в этих районах резко выражен максимум развития фитопланктона в зоне сезонного скачка плотности, выше которого жизнедеятельность растений лимитируется недостатком биогенных солей, а ниже — малой освещенностью. Осенью распределение фитопланктона в трофогенном слое становится относительно равномерным и сохраняется таковым до формирования слоя скачка плотности следующей весной.
4.2. Бактериопланктон.
В тропических водах постоянно существует максимум бактериопланктона, совпадающий с положением основного пикноклина (концентрация бактерий в 10 раз больше, а продукция в 3—5 раз больше, чем на горизонтах, лежащих выше и ниже). Кроме того, повышенные концентрации бактерий наблюдаются в поверхностной пленке (при тихой погоде) и на глубине оптимального фотосинтеза водорослей. К северу и к югу от тропической зоны в зимний период бактерии распределены в толще воды почти равномерно, при весенне-летней температурной стратификации максимумы численности и продуктивности бактеориопланктона образуются на верхней границе сезонного пикноклина.
4.3. Зоопланктон.
Распределение зоопланктона в поверхностном слое, как и фитопланктона, существенно различается в тропических и холодноводных районах. В тропиках, в условиях круглогодичной стратификации вод, вертикальное распределение зоопланктона более или менее постоянно в течение года. Многие виды и группы видов приурочены в своем обитании к довольно узким слоям, например к поверхностной пленке; на ней существуют, например, сообщества нейстопа и плейстона, особые биоценозы характерны для средних и нижних горизонтов эпипслагиали и тому подобное. В теплых водах роль сезонных вертикальных миграций планктона ничтожна, зато очень важное значение получают суточные миграции из мезопелагиали в поверхностные и приповерхностные горизонты. В высоких и средних широтах в соответствии с сезонной вспышкой развития водорослей численность и биомасса зоопланктона в приповерхностных слоях резко увеличиваются весной. Это происходит главным образом за счет подъема зимовавших на глубине сезонно мигрирующих видов и усиленного размножения и роста всех растительноядных планктонов. Уменьшение количества фитопланктона в зимнее время приводит к быстрому снижению численности планктонных животных.
Биомасса мозопланктона повсюду с глубиной быстро убывает, причем соотношение между количеством его в поверхностных и глубинных слоях практически постоянно во всех районах Мирового океана: планктон слоя 0—500 м составляет около 65% общего количества его в слое 0—4000 метров. Как показано М. Е. Виноградовым (1968, 19776), интенсивность уменьшения биомассы с глубиной имеет неравномерный характер. Выделяются разделенные градиентными зонами участки с поверхностным, среднеглубинным и абиссальным типами количественного распределения мезопланктона. Границы этих участков в тропических водах занимают более высокое положение (на глубинах 100—200 м и 1500—2500 м), чем в средних широтах (от 500—750 до 1000 м и на 2500—3500 м).
Наибольшие концентрации макропланктона приходятся на средние глубины (от 500 до 1500—2000 м). При этом в олиготрофных тропических районах (центральные круговороты) максимум биомассы приходится на слои 500—1000 м. (около 25% общей биомассы планктона). В более продуктивных участках тропической зоны, в частности у экватора, макропланктона много на глубинах от 200 до 2000 м, а наибольшая биомасса (до 74% общей) отмечается в слое 1000—2000 метров. В субполярных районах наибольшее количество макропланктона находится в слое 500—1000 м, но его доля максимальна на глубинах 2000—3000 м (до 11% биомассы). Приведенные цифры были получены для Тихого океана (Виноградов, 1968), но они, несомненно, характеризуют и общие закономерности вертикального распределения макропланктона.
Одна из важнейших экологических особенностей тропического макропланктона — суточные вертикальные миграции, особенно характерные для мезопелагических ракообразных, головоногих моллюсков и рыб. В результате вертикальных перемещений этих животных дважды в сутки (утром и вечером) происходят кардинальные перестройки количественного распределения планктона. В ночное время наблюдаются два или три максимума биомассы макропланктона — у поверхности воды, у верхней границы главного термоклина и в нижней части мезопелагиали (последний образуется за счет немигрирующих организмов). Днем все мигранты уходят вниз, и существует только один максимум биомассы (Парии и др., 1977).
4.4. Бентос.
Во всех широтных зонах биомасса бентоса на литорали и в сублиторали характеризуется значительно более высокими числовыми показателями, чем на батиальных и абиссальных глубинах. Л. А. Зенкевич (1970) приводит следующие приближенные значения биомассы для разных вертикальных зон дна: количество бентоса на литорали исчисляется килограммами и даже десятками килограммов на квадратный метр, в шельфовых морях биомасса составляет в среднем 100— 150 г/м2, а в абиссали центральных частей океана — 0.05—0.1 г/м2 и меньше. Таким образом, амплитуда изменения биомассы по глубине превышает миллион раз. Столь большие различия объясняются резким уменьшением кормовых ресурсов с глубиной. Сейчас уже не подлежит сомнению, что определяющая роль в количественном распределении донного населения по площади океана принадлежит трофическим условиям (Соколова, 1977). Бентосные животные с