Сифоны в древнеримских водопроводах
Одним из замечательных инженерных достижений древних римлян была система водопроводов, по которым вода ежедневно поступала в главные города Римской империи. Многокилометровый водопровод проходил по пересеченной местности. Для его прокладки через ущелье римляне применяли два различных способа: либо строили через ущелье мост с небольшим уклоном в сторону стока, либо использовали принцип сифона, согласно которому вода в трубе должна всегда возвращаться к своему первоначальному уровню. Для этого сооружали систему труб, которые круто спускались по одному склону ущелья и поднимались по другому. В тех случаях, когда глубина ущелья была относительно небольшой, строили мосты. Там же, где ущелье было слишком глубоким, сооружали сифон.
Как известно, сифон представляет собой трубу, по которой жидкость переливается с одного уровня на другой через промежуточное возвышение, т.е. по траектории в форме буквы "П". Другими словами, жидкость сначала течет вверх по трубе, и это движение должно быть первоначально сообщено ей насосом или другой внешней силой. Затем жидкость перетекает по сифону самостоятельно благодаря атмосферному давлению, действующему на поверхность открытого бассейна на подающем конце сифона. Принцип сифона знаком автолюбителям: один конец шланга опускают в бензобак автомобиля, затем нужно засосать бензин на другом конце шланга и быстро опустить его в канистру. Бензин будет сам стекать из бака в канистру до тех пор, пока его уровень в баке остается выше уровня в канистре.
Конструкцию сифона, применявшегося в Древнем Риме, правильнее называть обратным сифоном, или дюкером. В нем жидкость движется по U-образной траектории, и сифон начинает работать, как только жидкость вводится в одно из его плеч. В простом U-образном сифоне жидкость, введенная на одном конце, поднимется до того же уровня на другом. Римские сифоны имели значительную длину, поэтому потери на трение становились заметными и приемный конец приходилось устраивать на уровне несколько ниже подающего конца.
Хотя известно более двадцати сифонных сооружений, относящихся ко времени Римской империи, роль сифонов в римских гидравлических системах обычно недооценивается. В отличие от впечатляющих развалин древних мостов до нас сохранилось очень мало остатков сифонов. Их прокладывали по поверхности земли, поэтому они могли быть легко разрушены. Кроме того, они играли лишь второстепенную роль в системе римских водопроводов, которую современные ученые изучили наиболее тщательно. (Сифоны, очевидно, сооружали главным образом на территории современной Франции, в частности, вокруг Лиона, где в четырех водопроводах, снабжавших город водой, было девять сифонов.) Таковы две основных причины, по которым роль сифона оказалась недооцененной.
Вследствие этой недооценки многочисленные приверженцы ошибочных представлений (все еще бытующих в учебниках по римской гидравлике) утверждают, что римляне предпочитали строить мосты, а не сифоны потому, что не умели изготавливать трубы, способные выдерживать высокое давление воды в обратном сифоне. В действительности же перемещение воды по трубам в римских сифонах осуществлялось под значительным давлением. В 1875 г. французский инженер Эжен Бельгран изготовил копии римских труб и подверг их испытаниям на разрушение, которое происходило только тогда, когда давление в трубах достигало 18 ат. Такие трубы могли успешно работать в сифоне, опускающемся на 180 м ниже исходного уровня. Этот сифон не смогли бы заменить и три моста Пон-дю-Гар, поставленные друг на друга. Мост-акведук Пон-дю-Гар – впечатляющее древнеримское сооружение высотой 50 м – находится близ Нима на юге Франции.
Обычно сифон начинался в точке, где водопровод, проложенный в виде открытого канала из каменной кладки, достигал края ущелья, которое нужно было пересечь (см. рисунок на с. 72). В этом месте вода стекала в напорный резервуар, выложенный из кирпича и установленный поперек канала. По существу, этот резервуар был распределительным, так как сифон состоял не из одной (как в современной гидротехнике), а из нескольких (до девяти) тонких труб, уложенных параллельно друг другу. Их входные концы располагались в ряд в нижней части резервуара.
Трубы изготавливали из свинцовых листов, которые сначала изгибали на деревянном сердечнике, после чего продольные края образованной трубы спаивали, а сердечник вынимали. Труба получалась овального или грушевидного поперечного сечения с непрерывным продольным швом. (Интересно, что шов, очевидно, не был самым слабым местом трубы; в испытаниях, проведенных Бельграном, разрушение происходило не по шву, а по боковой стенке.) Таким способом было трудно изготовлять трубы большого сечения, поэтому римские сифоны состояли из нескольких тонких труб. Обычно они имели наружный диаметр 25-27 см и толщину стенки от 3 до 5 см. Судя по сохранившимся остаткам, трубы изготавливались длиной около 3 м.
Подсоединенные к напорному резервуару, трубы опускались по короткому откосу до земли и проходили по склону ущелья с заглублением примерно на 1 м. Подземная прокладка труб, использованная, по-видимому, для их зашиты от повреждения человеком, предотвращала также чрезмерное расширение труб в жаркие дни.
Сифонные трубы могли прокладываться до самого дна ущелья, следуя его профилю, однако на дне часто строился невысокий мост ("вентер" – лат. venter), с тем чтобы нижняя часть U-образного сифона была более плоской для уменьшения перепада высот. Вентер создавал два резких перегиба ("геникулус" – лат. geniculus) на концах моста, вследствие чего могли возникать напряжения в стыках труб при ударе водяной струи. Однако он сокращал расстояние от верха до низа U-образного сифона и, следовательно, уменьшал статическое давление.
Даже там, где вентер хорошо сохранился (например, близ Бонана под Лионом), на его поверхности уже нельзя обнаружить следов когда-то проложенных по нему труб. Вентер в Бонане имеет ширину 7,35 м, значительно большую, чем необходимо для прокладки девяти труб диаметром 25 см. Вероятно, широкие края моста служили проходом для рабочих.
После второго геникулуса трубы поднимались по противоположному склону ущелья. Наверху вода поступала в приемный резервуар, аналогичный напорному, а из него – в обычный водопровод. Приемный резервуар устанавливался заметно ниже уровня напорного резервуара; разность их уровней составляла так называемый гидравлический градиент. Вода могла бы подняться до своего первоначального уровня, если бы ее движение не замедлялось постепенно возрастающим трением в девяти тонких трубах. В трубах площадь соприкосновения воды со стенками значительно больше, чем в обычном прямоугольном канале, в частности, потому, что такой канал не заполнялся полностью и вода в его верхней части текла без трения о стенку. Следовательно, если бы оба конца сифона были на одном уровне, движение воды через сифон было бы настолько медленным, что произошло бы переполнение напорного резервуара. Для того чтобы обеспечить подачу воды в нужном объеме и с нужной скоростью, при устройстве сифона через ущелье приходилось мириться с большей потерей высоты, чем при сооружении обычного моста-акведука. Гидравлический градиент сифона был примерно в 10 раз больше нормального уклона моста-акведука.
О разнообразии топографического характера местности, при котором римляне прибегали к устройству сифонов, можно судить по четырем сохранившимся акведукам, снабжавшим Лион водой: это Монт-д’Ор, Жье, Крапонн и Бревенн. Даже относительно короткий водопровод с небольшим общим перепадом высот мог потребовать сооружения нескольких сифонов; их число, вероятно, определялось числом ущелий, пересекаемых водопроводом. Водопровод Монт-д’Ор при перепаде высот 90 м имел два сифона. Водопровод Жье имел равномерный и небольшой уклон, но при общем перепаде высот 110 м потребовал устройства 4 сифонов. Водопровод Крапонн имел крутой перепад в 420 м и всего лишь два сифона, причем один из них – гигантских размеров. Водопровод Бревенн проходил по ступенчатому профилю перемежающихся обрывов и плато. При общем перепаде высот в 350 м для него потребовалось соорудить лишь один сифон.
Еще более поучительным может быть сравнение различных сифонов. Водопровод Жье имел два больших сифона – близ Сусье и Бонана. Первый имел длину 1,2 км и глубину 93 м, второй – длину 2,6 км и глубину 123 м. По случайному совпадению перепад высот в каждом из них был 9 м. Это означает, что сифон у Сусье, как более короткий, имел больший гидравлический градиент. Водопровод Крапонн служит свидетельством когда-то существовавшего воистину огромного сифона длиной около 6 км, который опускался почти на 100 м ниже гидравлического градиента. Остатков этого сифона почти не сохранилось, и свидетельство о нем является в большей мере чисто топографическим: известно, что водопровод пересекал широкое и глубокое ущелье, слишком большое для сооружения моста, и, следовательно, там был использован сифон.
Даже по древнеримским нормам количество воды, поступавшей по четырем лионским акведукам, не было особенно внушительным. По оценкам оно составляло 80000 куб. м в сутки, т.е. значительно меньше, чем у древнеримской водопроводной системы, – от 700000 куб. м до 1 млн. куб. м в сутки. (Все цифры водопотребления в Древнем Риме могут показаться необычно высокими современному читателю, но нужно иметь в виду, что римляне почти не пользовались кранами и вода текла непрерывно, обеспечивая промывку канализационных стоков).
Тем не менее сифоны как инженерные сооружения внушают уважение уже своими размерами. Общая длина девяти сифонов в лионской водопроводной системе достигает 16,6 км. Если каждый сифон состоял из девяти труб, то общая длина труб должна быть около 150 км, т.е. почти равна расстоянию от Рима до Неаполя и больше чем расстояние от Нью-Йорка до Филадельфии. Для изготовления такого количества труб требовалось 12-15 тысяч тонн свинца, и очевидно, что добыча и транспортировка такого огромного количества свинца требовала гигантских усилий. Каждый метр этих труб находился под давлением, которое могло иногда достигать 12 ат. Несомненно, что в системе были течи, но она работала и перекрывала ущелья значительно большего размера, чем самые большие римские виадуки и мосты.
В дополнение к тому факту, что вода поднимается в сифоне до своего первоначального уровня, древнеримские строители должны были учитывать действие в сифоне трех сил. Во-первых, это трение в трубах, которое замедляло течение воды настолько, что приходилось жертвовать высотой для того, чтобы обеспечить постоянный ток воды. Во-вторых, статическое давление в трубе, зависящее от глубины ее закладки относительно исходного уровня воды. Статическое давление создается самим присутствием воды и действует одинаково во всех направлениях.
Оно остается неизменным независимо от того, движется вода или нет. В-третьих, инерционный напор, создаваемый водой в перегибах трубопроводов при ее движении. Инерционный напор направлен вовне по отношению к изгибу. Вторая сила действует всегда, когда сифон наполнен водой. Все три силы находятся в действии, только когда сифон наполнен и пропускает воду.
Сифоны приходилось периодически освобождать от воды для чистки и ремонта. При наполнении труб водой инерционный напор может достигать критической величины. Воду нужно было впускать медленно и постепенно до наполнения трубы. Если же затворы открывали резко, вода, обрушиваясь с высоты и ударяя в первый перегиб трубы, могла ее разрушить. Отсечка воды для дренажа трубы также должна была производиться постепенно; в противном случае, т.е. при резком закрытии затвора, могло возникать явление гидравлического удара в результате распространения ударной волны в обратную сторону вдоль внезапно остановленного столба движущейся воды. Это также могло вызывать серьезные повреждения труб.
Мы не знаем, насколько полно понимали древние римляне эти принципы. Ясно, что они могли применять их эмпирически, поскольку известно, что сифоны работали успешно. Попытки отыскать подробное изложение теории сифонов в древних рукописях, к сожалению, не дали утешительных результатов. До нас дошел трактат о водопроводной системе Рима, написанный Секстом Юлием Фронтинусом, который в 97 г. н.э. был назначен управляющим водоснабжения Рима, однако он не упоминает сифоны может быть потому, что они не считались значительным элементом римской водопроводной системы. Единственным дошедшим до нас письменным свидетельством является описание сифонов, содержащееся в восьмой книге "Об архитектуре" (De Architectura) Марка Витрувия Поллио.
Некоторые записи Витрувия вполне ясны. Он понимал, что дренаж и наполнение сифона должны производиться с осторожностью, и рекомендовал укреплять сифонные трубы массивной каменной кладкой, чтобы усилить их сопротивление инерционному напору в перегибах. Однако он заблуждался в основных принципах и, вероятно, не вполне понимал, как работает сифон.
В его описании сифонной гидравлики наибольшее заблуждение проявляется во фразе: "Etiam in ventre colliviaria sunt facienda par quae vis spiritus relaxetur". Переводится она просто: "На дне сифона мы должны установить колливиарии, чтобы выпустить воздушное давление". Однако понять ее почти невозможно. Латинские слова понятны, но фраза сама по себе бессмысленна.
В этой фразе две загадки. Первая относится к "колливиариям". Слово нигде больше не встречается в латинских текстах, так что по нему невозможно судить об устройстве этого элемента сифонов. Приходится догадываться по контексту.
Вторая загадка связана с "воздушным давлением". Современные трубопроводы часто снабжаются выпускными клапанами для предотвращения образования воздушных мешков. Иногда высказывается предположение, что колливиарии были именно такими выпускными клапанами, однако при этом не учитываются несколько существенных моментов.
Во-первых, воздушные мешки могут образовываться только в верхних точках трубопровода, где и устанавливаются теперь выпускные клапаны, а вовсе не "на дне". Во-вторых, в римском сифоне не мог скапливаться воздух, так как трубы были заполнены водой. Растворенный же в воде воздух мог выделяться из нее только при низком давлении, тогда как давление в сифоне было довольно высоким по всей его длине. Увлеченный водой воздух обычно образует воздушные мешки при низком давлении и скапливается в верхних точках сифона, но не у дна. Кроме того, форма римского сифона была не подходящей для скопления захваченного водой воздуха: пузырьки воздуха должны были попросту увлекаться водяным потоком, проходить через изгибы труб и свободно выделяться из воды на конце сифона. В-третьих, так как воздушные мешки могут образовываться только при низком давлении и, следовательно, представляют собой частичный вакуум, функцией выпускных клапанов могло бы быть лишь выравнивание давлений путем впуска воздуха извне.
Предполагалось также, что Витрувий имел в виду клапаны не для воздушного, а для водяного давления. Но это предположение еще дальше от истины, чем первое. Даже если бы древние римляне и были в состоянии сконструировать клапан с пружиной или противовесом, который открывался бы при заданном давлении, все равно не было бы никакой возможности снизить статическое давление (как только путем изменения профиля сифона с уменьшением его глубины), и, следовательно, такой клапан оставался бы постоянно открытым, т.е. он функционировал бы не как клапан, а как дыра в трубе.
Учитывая вышесказанное, следует заключить, что в сифоне не могло быть воздуха и не было средств снизить водяное давление. Представляется наиболее вероятным, что термин "колливиарии" обозначал дренажные краны или отверстия для чистки труб, возможно, с помощью инструментов типа шарошки. Вода в древнеримских городах была обычно жесткой и на внутренних стенках труб могли образовываться отложения. Поэтому трубы приходилось регулярно чистить, чтобы избежать полного их забивания. Отложения могли образовываться и в узких сифонных трубах, и их тоже требовалось регулярно чистить или заменять.
Древние греки также применяли сифоны. Среди сифонов древности наиболее известен исключительно большой сифон в Пергаме в Малой Азии. Он относится ко времени правления эллинского монарха Евменеса Второго (197-159 гг. до н.э.), т.е., безусловно, к доримским временам, и состоит из одной трубы длиной 3 км, спускающейся на очень большую глубину – 190 м. Вода в сифоне создавала статическое давление примерно 19 ат.
В течение многих лет в наше время этот сифон был причиной многих заблуждений ученых. Поскольку многочисленные римские сифоны были неизвестны или не удостаивались должного внимания, пергамский сифон создавал ложное впечатление, что древние греки преуспели больше римлян в теории гидравлики и что они были более искусными инженерами, способными изготавливать трубы для больших давлений, тогда как римлянам это не удавалось.
Теперь очевидно, что это мнение ошибочно. Если сравнивать глубину самых больших римских сифонов с высотой самых больших построенных ими мостов, можно заметить, что все их сифоны были очень большими и в их трубах могли развиваться высокие статические давления. Это само по себе опровергает существовавшее мнение, что древние римляне принимали все меры к тому, чтобы устранить давление. Напротив, можно утверждать, что они применяли трубы (а не открытые каналы или мосты-акведуки) во всех случаях, когда давления оказывались высокими.
Можно сделать и другой вывод. Сравнивая высоту сифонов и мостов-акведуков, можно видеть, что они не перекрывают друг друга и граница проходит на уровне 50 м. При большей глубине ущелья римляне сооружали не мост, а сифон. Можно поэтому заключить, что они отдавали предпочтение мостам-акведукам и обращались к сифону как к вспомогательному средству в тех случаях, когда их инженеры не могли построить мост или виадук нужной высоты. Очевидно, они полагали, что высота 50 м – предельная безопасная высота моста.
Так как римляне строили только сложные сифоны, то совершенно ясно, что более широкому применению сифонов препятствовали вовсе не технические трудности. Наиболее вероятная причина была высказана Норманом А. Ф. Смитом из Имперского колледжа науки и техники в Лондоне, который утверждает, что все дело было в экономике. Очевидным фактом является то, что сифоны обходились римлянам дороже, чем мосты. Каменная кладка была дешевой, особенно если камень добывался на месте; дешевыми также были кирпич и известковый раствор. Дешевым был и свинец, который получали в избытке как побочный продукт рафинирования серебра.
Не было проблемой, очевидно, и свинцовое отравление, хотя некоторые современные ученые и усматривают в широком применении свинца римлянами причину бесплодия и другие аспекты деградации и упадка. Римляне знали об опасности свинцового отравления. Кроме того, так как кранов не было, вода текла непрерывно и поэтому была в контакте со свинцовыми трубами лишь недолгое время. Толстая же корка карбоната кальция, которая постепенно образовывалась в трубах, служила изоляцией, так что через некоторое время после установки сифонных труб прямой контакт воды со свинцом прекращался полностью.
Проблема со свинцом заключалась в его транспортировке. Огромные затраты и тяжелый труд по доставке 15000 т свинца в Лион, вероятно, послужили лучшим аргументом того, чтобы не повторять такой опыт чаще, чем это необходимо.
В наше время положение изменилось коренным образом благодаря чугуну. Этого материала не было в древности, так как тогда люди еще не научились развивать в печах достаточно высокую температуру для плавки железа. Все железо в древности было кричным железом, из которого нельзя было делать трубы. Сейчас сооружение сифона из чугунных труб обходится значительно дешевле, чем строительство моста. Интересно, что французы в Северной Африке часто подавали воду в приморские города по трассам древнеримских водопроводов, иногда реконструируя их: и во многих случаях там, где существовали древнеримские мосты, французы перекрывали пролет сифоном.
Идея проста. Древние римляне построили высокие арки моста Понт-дю-Гар не просто из любви к грандиозным сооружениям (хотя они, безусловно, гордились его величием) и не потому, что их строителям не хватало знаний греков или они якобы не могли делать прочные трубы. Решающим фактором была стоимость сооружения. Поэтому там, где проходили древнеримские водопроводы кое-где встречаются остатки кирпичных арок на месте, где когда-то можно было восхищаться смелостью инженерной мысли – перекрывающим ущелье сифоном.
НАПОРНЫЙ РЕЗЕРВУАР И ОТКОС – элементы сифона в Сусье на водопроводе Жье, одном из четырех водопроводов, снабжавших водой древнеримский Лугдунум (ныне Лион). Вода поступала из открытого канала в резервуар, а из него – в девять узких свинцовых труб. Трубы спускались по откосу (на переднем плане), шли вниз по склону ущелья с заглублением примерно на 1 м, пересекали низкий мост (вентер) и поднимались по противоположному склону к приемному резервуару. Оттуда вода стекала в открытый канал.
СХЕМА ДРЕВНЕРИМСКОГО СИФОНА (a). Конструкция называется обратным сифоном, так как вода движется по U-образной траектории в отличие от обычного сифона, имеющего П-образную форму. Давление воды было особенно высоким в месте перегиба труб (геникулусе) по концам моста (вентера), поэтому римляне обычно укрепляли здесь трубы массивной каменной кладкой. Вентер устраивался для того, чтобы несколько уменьшить перепад высот. Приемный резервуар устанавливали несколько ниже уровня напорного резервуара ввиду замедленного движения воды в трубах вследствие трения; разность высот установки резервуаров составляла гидравлический градиент. Для наглядности масштаб по вертикальной оси увеличен. Схема (b) дает представление об истинном профиле и градиентах Бонанского сифона водопровода Жье.
РЕКОНСТРУКЦИЯ начального участка сифона, выполненная Вальдемаром Хабери в Рейнском музее в Бонне. Напорный резервуар и трубы на откосе были защищены каменной кладкой. Трубы имели длину 3 м и наружный диаметр 25-27 см.
СИФОННЫЕ ТРУБЫ изготавливали гибкой свинцового листа на деревянном сердечнике. Сердечник затем вынимали, а верхний шов зачеканивали молотками или запаивали, чтобы обеспечить гидравлическую плотность (три правых рисунка). Трубы имели овальное или грушевидное поперечное сечение.
ЛИОНСКАЯ СИСТЕМА имела четыре водопровода: Монт-д’Ор, Бревенн, Грапонн и Жье. Всего в ней было 9 сифонов, что определялось числом глубоких ущелий, через которые проходили водопроводы. На нижнем рисунке показаны профили водопроводов Лионской системы. Названия сифонов пронумерованы (см. в нижнем правом углу карты) и те же цифры нанесены на карту, чтобы показать их положение на местности. Система подавала 80000 куб. м воды в сутки.
БОНАНСКИЙ ВЕНТЕР, показанный из точки первого геникулуса, где трубы выходили из земли и проходили по поверхности моста. Ширина вентера была значительно больше, чем необходимо для укладки девяти узких труб; дополнительная ширина, очевидно, была необходима для прохода рабочих. Из-за высокой жесткости воды трубы приходилось часто чистить.