Молекулярная палеонтология и эволюционные представления о возрасте ископаемых останков

В настоящее время сфера молекулярно-биологических исследований расширяется на те области, о которых раньше и подумать было нельзя, что они могут быть предметом молекулярной биологии. В частности, за последние 15–20 лет накоплены данные в такой новой дисциплине, как молекулярная палеонтология. Оказывается, в останках динозавров, мастодонтов и моллюсков, для которых общепринятый возраст составляет вплоть до сотен миллионов лет, можно обнаружить не распавшиеся фрагменты белков и ДНК. Эти сведения подвергают сильному сомнению общепринятую датировку ископаемых останков, а, значит, и эволюционные догмы. В то же время, несмотря на ощутимый массив накопленных данных, они не приобрели широкую известность.

Целью настоящего обзора является критический анализ таких данных. Хотелось бы надеяться, что высказанные соображения и углубленный разбор конкретной информации, сделанный в профессиональном аспекте, послужат прояснению, во-первых, вопроса о так называемой "научности" эволюционных представлений и, во-вторых, о субъективизме и некорректности, к которым с неизбежностью приходит исследователь, когда он начинает "подгонять" свои объективные научные данных под эволюционные построения.

1. Молекулярная палеонтология — "молодая" научная дисциплина

Как и молекулярная биология, молекулярная палеонтология, но применительно к ископаемым остаткам, в первую очередь пытается исследовать основную молекулу, в которой закодирована информация об организме, т.е. ДНК. Однако некоторые важные особенности того или иного вида можно выявить путем изучения и других биологических макромолекул — белков, липидов, углеводов (1). Вследствие крайне низкой сохранности ДНК в ископаемых образцах (см. ниже) необходимо сделать вывод, что на настоящий момент наилучшие данные получены при исследовании не ДНК, а белков. И так же останется в будущее время, какого бы прогресса ни достигли методы биологических исследований.

Результаты экспериментов молекулярных палеонтологов порождают дискуссии и множество противоречивых суждений. Это обусловлено следующими причинами:

• Отсутствием эмпирических данных о принципиальной возможности сохранения биологических макромолекул в течение длительных, геологических периодов времени. Условия и длительность воздействий (и даже их вероятный перечень) нельзя промоделировать в лаборатории.

• Как правило, малым количеством исходного биологического материала, что обычно не позволяет провести достаточно исчерпывающее исследование повторно.

• Уникальностью каждого образца, поскольку невероятно обнаружение даже двух ископаемых остатков, для которых все условиях их сохранения были бы одинаковыми. Это приводит к тому, что нет возможности корректно воспроизвести полученные теми или иными авторами аналитические опыты.

• Большой степенью загрязненности ископаемых образцов посторонними высокомолекулярными примесями (белками и нуклеиновыми кислотами от сопутствующих бактерий, грибков и др.), что затрудняет идентификацию истинно эндогенного (т.е. присущего самому образцу) материала. Например, обнаружение в древних образцах только аминокислот не предполагает с необходимостью, что их источник — оригинальные древние белки.

В связи с этим, значимость данных, полученных в рамках молекулярной палеонтологии, корректность ее подходов и методов часто подвергаются сомнениям, что отмечают ведущие специалисты в этой области (1).

Началом молекулярной палеонтологии может, по-видимому, считаться 1956 г., когда из окаменелостей были впервые выделены белки (2), а в 1974 г. путем реакции осаждения с антисывороткой показана сохранность антигенных компонентов белков возрастом "70 млн. лет" (3).

В этих старых работах вряд ли выяснено, были ли те биомолекулы действительно эндогенными для древних образцов, или же они представляли собой результаты более "молодых" посторонних загрязнений бактериями и/или грибками (артефакты): использованные методологические подходы, скорее всего, не позволили получить однозначные ответы.

Правда, данные столь же старого исследования 1976 г. (4) кажутся более адекватными: из останков моллюска ("80 млн. лет") были выделены фрагменты гликопротеинов, у которых идентифицированный участок аминокислотной последовательности оказался аналогичен показателю белка такого же, но современного моллюска (4).

Пионерами работ в области молекулярной палеонтологии должны считаться, по-видимому, польские авторы из Краковского университета под руководством доктора Р. Павлички (R. Pawlicki). Начав еще в 1960-х гг. изучать кости динозавра, возраст которого был оценен в 80 млн. лет, они в течение более 30-ти лет публиковали результаты своих исследований, причем в весьма солидных научных журналах. В образцах костей динозавра были обнаружены под электронным микроскопом сосудистые каналы, выявлены волокна коллагена и детектированы подобные остеоцитам (клеткам костей) образования. С помощью иммуногистохимических и др. методов продемонстрировано наличие в сосудистых стенках окаменевшей кости углеводов, липидов и ДНК (5, 6) (полную библиографию работ польских авторов см. в статье креациониста Марка Армитэйджа (7)). Обнаружены даже эритроциты динозавра, содержащие железо (5). Вопрос о них, оказавшийся одним из камней преткновения в дискуссии между эволюционистами и креационистами, мы рассмотрим ниже.

Однако. Несмотря на то, что совокупность данных, полученных польскими авторами, оставляет впечатление высокой достоверности, все-таки каждый исследованный показатель по-отдельности является только косвенным. Таковы использованные методы. Хотя углеводы, липиды и ДНК находятся в районе сосудистой стенки, нет однозначных доказательств их эндогенного (присущего самому образцу) происхождения. Вполне вероятно, что там биомолекулы микробов или грибков. Про видимые под микроскопом структуры, очень похожие на остеоциты и эритроциты, могут сказать, что это артефакты, обусловленные внешними воздействиями на кость в течение длительного времени. Даже то, что в районе эритроцитов обнаружено намного бóльшее содержание железа (5), не является окончательным доказательством: всегда можно предположить, что некие железосодержащие бактерии почему-то облюбовали именно эти места в какой-то момент из многих миллионов лет.

Повторим: кажется очень маловероятным, что перечисленные показатели наличия не распавшихся фрагментов макромолекул в кости динозавра в Кракове в совокупности своей обусловлены артефактами (тем более в свете полученных другими исследователями данных). Но "кажется" — это не доказательство.

С 1998 г. прекратились публикации польских авторов на указанную тему. Ведущие молекулярные палеонтологи ныне их не цитируют, что кажется не только странным, но и просто некорректным. Так, в обширном и информативном обзоре по молекулярной палеонтологии за 2003 г. доктора Мэри Швейцер (M.H. Schweitzer) из США (известной своим гемоглобином тиранозавра; ниже) нет ни одной ссылки на многочисленные статьи польских исследователей, хотя часто и разбираются гораздо менее существенные данные других авторов (1). Нет указанных ссылок и в "программной" экспериментальной статье М. Швейцер с соавторами по биомолекулам тиранозавра за 1997 г. (8). Можно предположить, что все дело в тех эритроцитах ископаемых ящеров, которые (эритроциты), причем вместе с самими тиранозаврами, стали "костью в горле", если не чем похуже, для доктора М. Швейцер (это будет видно ниже). Не хочет она, видимо, в 2003 г. (1) даже вспоминать о тиранозаврах с их эритроцитами и, посему, позволяет себе научную недобросовестность.

С развитием иммунохимических методов исследования в конце 1970-х — начале 1980-х гг. стало возможным получение более однозначных результатов. При использовании антител (антисывороток животных, иммунизированных исследуемыми белками), узнающих только белки позвоночных и даже только конкретные типы этих белков (например, альбумин, гемоглобин, коллаген и др.), отпал вопрос о том, что идентифицированные в ископаемых остатках макромолекулы являются результатом посторонних загрязнений бактериями или грибками. У последних не имеется белков, аналогичных по структуре альбумину, коллагену и т.п., а с биомолекулами самих микроорганизмов и грибков специфические к белкам позвоночных антитела не реагируют.

В результате, начиная с конца 1980-х гг. (особенно же — в 1990-х гг.) молекулярная палеонтология получила относительно большое развитие. Справедливости ради надо отметить, что достижения в иммунохимических методах определения биомолекул позволяли получать адекватные результаты уже с середины 1970-х гг., но по каким-то причинам (по-видимому, субъективного и финансового характера) молекулярные палеонтологи начали свои углубленные изыскания только в 1990-х гг. И — молекулярную палеонтологию относят ныне к "молодой науке" (1).

Основная цель дисциплины — это, конечно, попытки найти эволюционные связки на молекулярном уровне между теми или иными классами и семействами животных. Подкрепить, так сказать, "научные эволюционные построения", причем желательно — на неодарвинистском, молекулярно-генетическом уровне, путем исследования ископаемых ДНК (1). Забегая вперед, позволим себе сразу сказать: все это, исходя из плохой сохранности древних макромолекул и наличия множества артефактов — дело безнадежное (в особенности для ДНК), но, безусловно, имеющее большой рекламный отклик (вспомним хотя бы роман и фильм "Парк Юрского периода").

2. В каком виде сохраняются ископаемые остатки

Сама идея, лежащая в основе молекулярной палеонтологии, поначалу должна казаться любому биохимику и молекулярному биологу абсурдной. В самом деле: общепринято, что биологические макромолекулы, внутримолекулярные связи в которых имеют значительную свободную энергию, не могут быть устойчивыми в течение длительных периодов времени просто по определению. Базовое, "кухонно-научное" понятие (не значит — неверное) — что органические соединения не способны сохраняться в течение миллионов лет просто вследствие термодинамических процессов распада. Тление мира греховного, как пишут Святые Отцы (9). Да и микроорганизмы быстро разрушают органические субстраты.

И действительно, для обнаруживаемых ископаемых остатков было постулировано их окаменение с постепенным замещением органических структур неорганическими веществами (с низкой свободной энергией связей, а потому — стабильными). Только так, полагали ранее, могут сохраняться останки животных возрастом десятки миллионов лет. Исключительно в виде окаменелостей и отпечатков (а также хитина насекомых и весьма сходных панцирей черепах), причем в окаменелости переходят не только скелеты, но и мягкие ткани.

Механизм последнего процесса обусловлен проникновением минеральных веществ, находящиеся в водных растворах, в ткани погибшего организма с последующим замещением ими соединений, первоначально составлявших органические остатки. Процессу окаменения (fossilize; фоссилизации) кроме останков животных могут подвергаться также останки растений, когда их ткани, в частности древесина, замещаются кремнеземом. При недостатке же кислорода стволы и стебли растений превращаются в уголь, а листья — в углистые пленки. Аналогичным процессам фоссилизации иногда подвергаются микроорганизмы, но это происходит в исключительных условиях, когда их останки захоронятся и консервируются в тонкодисперсных осадках либо в коллоидных отложениях кремнезема (10). Единственным, что кажется более или менее похожим на ископаемые органические соединениям, являются углеводороды нефти и газа, но это не биомолекулы.

Даже очень редко встречающуюся мумификацию палеонтологических образцов связывают, все-таки, с замещением неорганическими соединениями исходных тканей в условиях сухого и жаркого климата, подобного климату пустынь. Например, в 1908 г. Ч. Штернбергом были найдены в Вайоминге нескольких мумий динозавров-траходонтов, образованные мелкозернистым песчаником. Полагают, что животные погибли во время песчаной бури и их трупы были занесены сухим песком. После мумификации высохшие ткани оказались замещенными песчаником, образовав так называемые псевдоморфозы (т.е. имитации настоящих мумий) (11).

Процесс окаменения не обязательно связан с очень длительными периодами времени: при некоторых условиях возможен достаточно быстрый переход органических соединений в окаменевший образец. С данным фактом соглашаются и палеонтологи-эволюционисты в своих работах (в качестве обзора см., например, (7)). А не соглашаться никак нельзя, поскольку есть ряд примеров: окаменевшее водяное колесо, погребенное в монолите скалы (фото см. в (12)), какие-то окаменевшие мешки с мукой и т.п. (7). Словом, нельзя однозначно утверждать, что для получения окаменевшего биологического образца обязательно необходимы сотни тысяч и миллионы лет.

3. Бывают ли не окаменевшие кости возрастом в "десятки миллионов лет"?

Окаменение окаменением, однако, оказывается, что некоторые кости даже динозавров почему-то "не совсем" окаменевшие. Именно в таких костях (или в подобных участках костей) наиболее успешны поиски сохранившихся биомолекул. У молекулярных палеонтологов иной раз встречаются термины " unmineralized" (13) и "nonpermineralized" (8), что, как кажется сначала, не может означать ничего другого, кроме как "не окаменевшая" и недоокаменевшая". Исследования (8, 13) доктора Мэри Швейцер с соавторами были посвящены выделению и идентификации фрагментов белков из кости тиранозавра возрастом в "65 млн. лет". И вокруг того, была ли та кость или же ее исследованные участки окаменевшими, возникла критика со стороны эволюциониста, доктора наук (Ph.D.) Дж. С. Харда (G.S. Hurd) (14). Критикует же он статьи известного креациониста доктора Карла Виланда (C. Wieland) (15, 16), в том числе за то, что тот постоянно называет ту "недоокаменевшую" кость тиранозавра совсем "не окаменевшей". Глобальный это вопрос, оказывается (см. в (14)).

Дело в том, что термин " unmineralized" — это не окаменевшая, а "nonpermineralized" — действительно, как бы частично недоокаменевшая. Перминерализация же — это проникновение минералов в район сосудистых участков кости, заполнение минералами ее открытых частей (14, 17). Две большие разницы, как говорится: вовсе не окаменевшая, это, де, быть не может — иначе как бы она сохранилась миллионы лет... А вот частично — пожалуйста, бывает такое.

Крепко ополчился на своем сайте доктор Дж. С. Хард на креационистов по этому поводу, обвиняя их в научной недобросовестности, натяжках и подтасовке фактов. Однако исследование первоисточников показало, что все может оказаться с точностью наоборот.

В своей первой статье в научном журнале ("Journal of Vertebrate Paleontology") доктор М. Швейцер прямо в заголовке указала: "...biomolecules in unmineralized bone from Tyrannosaurus". Было это в самом начале, в 1994 г. (13). Позже появилась публикация-интервью в недоступном нам научно-популярном американском журнале "Earth" (18), где, судя по (14) и (15, 16), она снова назвала ту кость "не окаменевшей".

Доктор К. Виланд поверил М. Швейцер и всюду в своих работах повторяет исходные слова основной исследовательницы. Но, начиная с 1997 г. в научных статьях доктора М. Швейцер по тиранозавру, мы более не встречаем термин "unmineralized", зато в программной статье (8) имеется уже "nonpermineralized", "недоокаменевшая частично", значит.

Доктор Дж. С. Хард, отчитывая доктора К. Виланда, с жаром не раз пеняет ему на то, что тот в своих выводах о "неокаменевшей кости" опирается на рекламную публикацию М. Швейцер с соавтором под характерным названием "Реальный Парк Юрского периода" в жалком научно-популярном журнале "Earth" в 1997 г. (18) (да и журнал тот, дескать, "приказал долго жить" после выхода третьего номера (14)).

Однако ни доктор Дж. С. Хард, ни доктор К. Виланд почему-то вовсе не упоминают на своих сайтах о работе в журнале по палеонтологии позвоночных, посвященной белкам в кости тиранозавра и опубликованной в 1994 г. (13). Там эта кость, как указано нами выше, прямо названа "не окаменевшей" в заголовке статьи. Такое впечатление, что о работе (13) оба вышеуказанных доктора не ведают (иначе бы К. Виланд мог ей оправдаться). Получается, что о той работе знают только сама М. Швейцер со своим шефом и еще двумя соавторами (и помалкивают (14)), а также ваш покорный слуга. Либо — что в 1994 г. были кости другого тиранозавра. Последнее весьма сомнительно (да и сам факт "не окаменения" кости возрастом в десятки миллионов лет не изменится от того, какому тиранозавру она принадлежит). И малопонятно, почему в 1994 г., когда приступили к исследованию той кости, она была "не окаменевшей", а к моменту главной публикации в 1997 г. стала "частично недоокаменевшей". "Фоссилизировалась" она местами за три года, что ли?

Как ошиблись с окаменением в начале исследования, сказать трудно. Можно предположить, что все дело в конъюнктуре: спохватились, когда несколько неосторожно назвали не окаменевшую кость своим именем (как же тогда с десятками миллионов лет?), и решили лучше подчеркнуть, что имелись некоторые "недоокаменевшие" места в участках сосудистых структур, а вовсе не то, о чем подумали в 1994 г.

Еще. В своем очень познавательном обзоре по молекулярной палеонтологии за 2003 г. (1) ведущий специалист в этой области, доктор Мэри Швейцер, в списке цитированной литературы представила всего одну свою работу (не про тиранозавра) из порядка десяти имеющихся. Нет там в списке ни единой статьи по идентификации белков в кости тиранозавра (не окаменевших в 1994 г. и "недоокаменевших" в 1997 г.), хотя в тексте и упоминается глухо о "возможности присутствия гемоглобина в кости динозавра", причем представлена все та же, единственная ссылка по совсем другому поводу (Schweitzer et al., 1999). Упоминание имеется, но подробного разбора данных, а также самих статей, в списке источников нет.

Такого ваш покорный слуга за четверть века не встречал ни в одном обзоре: чтобы не ссылались на свои же работы, будучи, притом, ведущим специалистом в данной области и имея основополагающие публикации. Налицо, так сказать, какой-то "тайный замысел". Ничем другим объяснить подобное нельзя. Ведь совсем безобидным кажется на первый взгляд вопрос о "неокаменении" или "недоокаменении", однако, как видим, страсти вокруг него разгорелись серьезные. Такие страсти, что доктор М. Швейцер в 2003 г., видно, опасается цитировать саму себя за 1994–1997 гг. В самом деле — прослывет "слепой пособницей креационистов", и финансирование работ по грантам весьма ужмется. А за такое профессор Дж. Хорнер (Jack Horner), шеф М. Швейцер, по головке ее, наверное, не погладит.

По-видимому, именно поэтому в вышеупомянутом обзоре 2003 г. (1) доктор М. Швейцер цитирует одну из двух своих работ последних лет, из которой следует, что она, Швейцер, стоит строго на эволюционных позициях: там развивается гипотеза о молекулярных механизмах развития внешнего покрова в эволюционной линии динозавры — птицы (19, 20). Причем цитированная работа опубликована в узкопрофильном журнале по экспериментальной зоологии ("Journal of Experimental Zoology") (20). Зато нецитированная, по белкам тиранозавра, — в серьезном и широко известном журнале АН США (8).

Столь подробно указанный вопрос мы разобрали здесь потому, что следует понимать степень субъективизма в представлении данных не только интерпретаторами важных экспериментальных фактов (независимо от того, эволюционисты то или креационисты), но и самих исходных исследователей. В особенности же в такой области, как "эволюционизм" или Творение. К сожалению, часто получается так, что мало какие из выходящих за рамки общепринятого научные (а также околонаучные) факты и рассуждения можно сразу принимать на веру. Необходимо убедиться не только в достоверности исходного источника, но и изучить доступные сопутствующие публикации, в особенности фундаментальные.

4. Биологические макромолекулы, фрагменты которых идентифицированы в останках организмов возрастом в "десятки и сотни миллионов" лет

Как уже упоминалось, в конце 1980-х и, особенно, в 1990-х гг. молекулярная палеонтология достигла относительно больших успехов. Белки и ДНК были выделены и идентифицированы из различных ископаемых остатков порой прямо-таки умопомрачительного оцененного возраста. Подобные работы, помимо Кракова (Польша), проведены в целом ряде лабораторий США, в Австралии, Нидерландах, Германии и, если включить сюда митохондриальную ДНК кавказского "неандертальца", даже в России (21).

В табл. 1 представлены имеющиеся на настоящий момент данные по выделению и/или идентификации белков и ДНК из ископаемых остатков в палеонтологическом плане: т.е. древних в смысле геологической хронологии. Использованные в цитированных работах методы (иммунохимический анализ либо сравнительное исследование характеристик очищенных белков) позволяют однозначно утверждать: это фрагменты (порой значительные) эндогенных макромолекул, т.е. принадлежащих самим ископаемым организмам, а не являющиеся посторонними примесями за счет бактерий, грибков и др.

Можно видеть, что, несмотря на оцененные периоды в десятки, а порой и в сотни миллионов лет, в образцах остались не распавшиеся фрагменты белков, которые можно определить с помощью антител. То есть фрагменты такой величины, что они способны антителами узнаваться.

Относительно бета-кератина и коллагена следует отметить, что эти белки, вследствие своей особой жесткой молекулярной структуры, являются наиболее устойчивыми как к химическим воздействиям, так и к деградации микроорганизмами (34). В то же время, относительно сохранности даже коллагена в ископаемых остатках все не так уж и ясно.

Ранние работы были сфокусированы на идентификации именно коллагена, поскольку он может быть детектирован в костях с помощью электронной микроскопии вследствие своей уникальной фибриллярной структуры (1). И действительно, в целом ряде исследований коллагеновые микроструктуры были хорошо видны под электронным микроскопом в остатках костей динозавров, мамонтов и других ископаемых животных (6, 7, 13, 36–38). Продемонстрировано, однако, что сохранение даже высокого уровня микроструктур не указывает с необходимостью на действительное наличие белковых молекул коллагена (структуры просто сохраняют их форму). В видимых коллагеновых структурах далеко не всегда идентифицируются специфические для этого белка аминокислоты (37) и не всегда такие структуры реагируют с антителами к коллагену (39).

Отсюда вывод: обнаружение под электронным микроскопом даже хорошо сохранившихся коллагеновых структур (и сосудистых стенок) внутри ископаемых костей не указывает однозначно на присутствие в них самого белка, поэтому ни к каким "сенсационным" креационистским выводам такие структуры в костях, например, динозавра (7), приводить не должны. Наверное, даже эти уже безколлагеновые образования вряд ли способны выдержать миллионы лет, но доказательств тому нет, поскольку в них, по-видимому, часто отсутствует лабильный органический материал (как в упомянутых выше псевдоморфозах песчаных мумий динозавров).

Представленные же в табл. 1 данные, в том числе по коллагену, отражают действительную идентификацию белковых фрагментов. Во всех перечисленных случаях действительно выделили и/или детектировали части белков. Наиболее сохранными оказываются, понятно, коллаген, кератины и остеокальцин, а наименее — более лабильные и более сложные белки с глобулярной структурой, в частности альбумин.

Имеется, однако, одно важное и фундаментальное исключение, связанное с работами все той же доктора Мэри Швейцер.

1. Кератины — белки, формирующие волосы, перья, чешую и т.п. образования. Вследствие жесткости своей молекулярной структуры очень устойчивы к внешним воздействиям. Бета-кератин для современных животных обнаружен только у рептилий и птиц (чешуя, перья) (34).

2. Представлена продолжительность периода или эпохи.

3. Коллаген. Соединительная ткань организма формирует хрящи, сухожилия, связки, остов костей и т.д. Механическая и поддерживающая функция этой ткани обеспечивается нерастворимыми нитями, образованными высокополимерными соединениями коллагена — самого распространенного белка животных. Мономеры коллагена представляют собой трехнитевые белковые "тяжи", которые связываются друг с другом поперечными молекулярными связями (сшивками), образуя коллаген. Такая жесткая структура обеспечивает механическую прочность при сопутствующей эластичности (34).

4. Остеокальцин — низкомолекулярный костный белок, содержащий много глутаминовой кислоты; специфичен для костей.

5. Результаты авторов из мормонского университета (США), по-видимому, спорны: имеется комментарий на данную работу ведущих молекулярных палеонтологов (35).

5. Фрагменты гемоглобина из кости тиранозавра (Tyrannosaurus rex)

В 1990 г. в восточной части штата Монтана выкопали останки тиранозавра. Почти сразу же (возможно, под влиянием фильма С. Спилберга), на Биологическом факультете университета штата Монтата, в г. Бозмене (Bozeman), США, началось исследование его костей в аспекте молекулярной палеонтологии. Работы проводились в группе ассистента профессора, доктора биологических наук (Ph.D.) Мэри Швейцер (Mary Higby Schweitzer). Руководителем лаборатории являлся (и является до сих пор) профессор Джек Хорнер.

Если посмотреть в Интернете страничку, посвященную сведениям о докторе М. Швейцер (40), то на фото перед вами предстанет симпатичная и жизнерадостная особа, имеющая, несмотря на свой не очень-то значительный возраст, солидный послужной список и, по-видимому, высокую профессиональную квалификацию. Именно доктор Мэри может ныне считаться, полагаю, одним из ведущих мировых исследователей в области молекулярной палеонтологии.

Программная экспериментальная работа, посвященная изучению макромолекул в кости тиранозавра, опубликована в трудах АН США и, как все статьи этого издания, полностью помещена в Интернете (Schweitzer M.H. et al., 1997) (8). Последнее позволяет углубленно ознакомиться со всеми методическими тонкостями и выводами авторов без посещения специальной библиотеки. Специалисту видна тщательность при выполнении экспериментов, адекватность методов и достоверность полученных результатов.

Хотя нашей задачей не является рассмотрение узких специальных вопросов биохимии и иммунохимии, все же придется разъяснить, что сделано и как. Иначе будет непонятно, да и слишком важна проблема.

Из участка кости с видимыми под микроскопом сосудистыми стенками провели экстракцию белкового материала. Такового было получено, с позиций биохимика-аналитика, ощутимое количество — порядка 1 мг. Фрагменты распавшихся белков (полипептиды и пептиды) явно имели небольшой размер, поскольку, как указывают авторы, они не идентифицировались при электрофорезе в денатурирующих условиях (8). Последний метод — это стандартный подход при разделении белковых смесей в соответствии с их молекулярной массой, и белки хорошо видны на электрофореграмме (при стандартных условиях опыта), только когда они имеют молекулярную массу не менее 6.000–10.000 "углеродных единиц" (вспомним школьную химию: углеродная единица — это 1/12 от массы обычного нам изотопа углерода 12C). Масса средней аминокислоты (всего их 22) составляет 140 у.е. (от 89 до 240 у.е.; большинство 120–150 у.е.). Следовательно, чтобы белок был хорошо "виден" при электрофорезе, он должен состоять из 40–70 аминокислот. Но в белковом экстракте из кости тиранозавра такие полипептиды не обнаруживались, следовательно, фрагменты оказались меньшими.

Априори было ясно, что основную часть должны составлять фрагменты именно гемоглобина — наиболее "обильного" белка крови (сравним только альбумин) — ведь экстрагировали те участки кости, где локализовались видимые под микроскопом стенки сосудов.

Далее авторы иммунизировали белковым экстрактом крыс. Обычно иммунизируют кроликов или морских свинок (у последних иммунный ответ сильнее, а от кроликов — больше материала), но в данном случае, в связи с малым количеством белкового экстракта, пришлось, наверное, выбрать крыс, которые меньше кроликов и свинок.

Иммуноген (экстракт) вместе с адъювантом Фрейнда (стандартный способ усилить иммунный ответ) вводили двум крысам, и у обеих выработались антитела (последнее указывает, что иммуногенность была достаточно стабильна; значит, фрагменты не являлись совсем уж ничтожными). Хорошо известно, что степень иммуногенности (т.е. способность вызывать выработку антител у животных) очень зависит от размера белковой или пептидной молекулы. Невозможно выработать антитела против фрагмента белка с молекулярной массой менее 1000, т.е. состоящего из порядка 7–8 аминокислот (см., например, (41)).

Однако авторы не просто получили "какой-то" иммунный ответ. Не это было их задачей. Они использовали антисыворотку крови крыс для дальнейших иммунохимических методов определения. Отсюда следует, что уровень антител в сыворотке был достаточно высок (иначе методы бы не сработали), а такое может быть обеспечено, только если фрагменты белка имели молекулярную массу значительно более 1000.

Думаю, что ни один специалист (даже иммунохимик) не скажет, какие точно минимальные размеры фрагментов белка при иммунизации необходимы, чтобы антисыворотка имела "рабочий вид". Он скажет, что иммуногенность зависит от конкретного типа белка, от конкретного типа фрагментов (она связана и с аминокислотным составом), от конкретных животных и т.п. Здесь просто голая эмпирика, можно сказать, почти ремесло: кто дольше работал и с бóльшим количеством белков, тот и способен дать более правдоподобный ответ. Тем более, что на практике редко получают антисыворотку к столь малым молекулам, поскольку таких белков в живом организме просто мало.

Ваш покорный слуга, хотя и получал антисыворотку и делал аналогичные вещи в области определения белков иммунохимическими методами, все-таки не является конкретно иммунохимиком. И тем не менее позволю себе сделать следующий вывод. Чтобы антисыворотка к каким-то белковым фрагментам, выделенным из той кости тиранозавра, "работала" так, как это наблюдалось у авторов (8), она все-таки должна была иметь ощутимый титр (концентрацию) антител. Поэтому и иммуногенность вводимых крысам полипептидов была достаточно ощутима, а, значит, и их молекулярная масса (длина молекулы) — тоже. Полагаю, что величина последней составляла никак не менее 2000–3000 у.е., что соответствует цепочке из порядка 15–20 аминокислотных остатков.

Указанный вывод косвенно следует в том числе и из руководств по иммунохимическим методам анализа (например (42)).

Далее авторы (8), использовав полученную антисыворотку, с помощью двух иммунохимических методов определили, реагирует ли она с препаратами гемоглобинов (коммерческих, выпускаемых химическими фирмами) из различных источников. При иммуноферментном анализе в растворе (ELISA) было обнаружено, что антисыворотка отчетливо "узнает" гемоглобин индюка, а с помощью иммуноблоттинга (это на специальной мембране) получены еще более исчерпывающие данные.

В (8) проделаны все стандартные контроли и представлен почти весь первичный экспериментальный иллюстративный материал. Перед иммуноблоттингом авторы убедились, что имеющиеся у них стандартные препараты гемоглобинов кролика, индюка и змеи вполне качественные. Действительно, хотя и закупленные, наверное, на крупных химических фирмах (в статье не указано, но вряд ли сами очищали), такие препараты могут портиться при хранении даже в холодильнике (микробы съедят, вода попадет). Это вам не доказывать, что выделенным не распавшимся фрагментам белка тиранозавра миллионы лет. Попробуй не убедись, что твои стандартные препараты современных белков не развалились у тебя (частично, конечно) при хранении в течение нескольких лет, или же при неаккуратной транспортировке с фирмы (когда лед положить забыли), и коллеги-биохимики могут указать на возможность некорректности и артефактов, посмотрев полученные тобой данные.

Это только у тиранозавра его полипептиды десятки миллионов лет нераспадаться способны.

Как бы там ни было, перед иммуноблоттингом авторы провели электрофорез своих стандартных гемоглобинов (электрофореграмма представлена) и убедились, что все они имеют присущую гемоглобинам молекулярную массу (порядка 64.000), то есть, что препараты "не развалились".

После этого проводили их иммуноблоттинг с антисывороткой к белковому экстракту из кости тиранозавра и обнаружили отчетливую (во всяком случае, на фото) реакцию с гемоглобинами кролика и индюка. А вот с гемоглобином змеи антитела не реагировали, и это послужило контролем того, что антитела связываются не с любым белком. Если бы антитела "узнали" еще и гемоглобин змеи, то авторам пришлось бы для контроля исследовать реакцию с еще каким-нибудь белком, не гемоглобином (с альбумином, к примеру). Чтобы сказать: да, реакция характерна не просто для белков как таковых, а именно и только для гемоглобинов.

Но в молекуле гемоглобина змеи не оказалось того участка аминокислотной последовательности, который соответствовал фрагментам гемоглобина тиранозавра, в то время как в гемоглобинах индюка и кролика он имелся. Антитела не среагировали с гемоглобином змеи, и, поэтому, авторам повезло: не пришлось проводить дополнительное исследование реакции с каким-нибудь другим, неспецифическим белком. В качестве его случайно выступил гемоглобин змеи.

С первого взгляда кажется странным: антитела к белку тиранозавра, а реагируют с гемоглобином кролика, но не змеи. Но это и не важно: просто такой участок полипептидной последовательности во фрагментах весьма распавшегося гемоглобина тиранозавра попался, которого нет в белке змеи. Тем более, что он имеется в гемоглобине птицы (индюка), а именно к птицам ящеры типа тиранозавра и близки (10, 11).

Авторы (8) проделали также иммуноблоттинг с экстрактами из бактерий и даже из окружавшего кость песчаника, но антитела со всем этим, конечно, не среагировали. Таким образом, почти все мыслимые контроли были соблюдены.

Однако идентификацией белковой части фрагментов гемоглобина тиранозавра М. Швейцер с соавторами похвально не ограничились. В состав молекулы гемоглобина входит специфичное молекулярное образование — гем: железо в особой координационной форме в связи с порфирином (это кольцевая структура; грубо говоря, что-то типа нескольких бензолов). Авторы (8) для идентификации специфической структуры гема в экстрактах из костей динозавра применили целый комплекс из пяти физико-химических методов: ЯМР, спектроскопию в ультрафиолете, ЭПР, HPLC и др. (не станем подробно рассматривать суть этих известных методов). Было обнаружено, что во всех случаях полученные показатели характерны для гема.

Кроме того, в местах локализации структур, соответствующих сосудам внутри костей, окраска была характерной для остатков крови (красно-коричневая). Такую же окраску имел и белковый экстракт (8, 16).

Это все, но этого вполне хватает, чтобы сделать следующие выводы:

1) Работа проведена корректно; использованные подходы адекватны, а полученные данные убедительны.

2) Найдены остатки специфичной структуры гема в участках сосудистой стенки кости тиранозавра.

3) Строго идентифицированы белковые фрагменты молекулы именно гемоглобина тиранозавра возрастом "65 млн. лет".

4) Эти фрагменты, хотя и малы, вряд ли состоят из менее чем 15–20 аминокислотных остатков, что составляет 3–5% от интактной (исходной) молекулы гемоглобина. В самом теоретически "худшем" случае фрагменты не могут включать менее 7–8 аминокислот (2% от интактной молекулы), но этот случай весьма проблематичен, исходя из их ощутимой иммуногенности. В наиболее же "лучшем" теоретически случае фрагменты не могут быть длиной более 40–70 аминокислот (10–15% от интактного белка), поскольку не видны при электрофорезе.

Таким образом, гемоглобин тиранозавра за "65 млн. лет" почему-то не распался на все 100%, а только максимум на 95–98%. Что же это за такой, по-видимому, никому неизвестный сверхустойчивый полипептидный участок входит в его состав? Новое слово в науке о гемоглобине и в науке о тиранозаврах.

6. Последствия работы доктора М. Швейцер с соавторами

Мы уже знаем, как доктор Мэри поспешила со своей, по словам одного эволюциониста "рекламной" (14), статьей-интервью в научно-популярном журнале в 1997 г.

"Реальный Парк Юрского периода" (18) у нее в лаборатории, понимаешь. И кость тиранозавра у нее почему-то то не окаменевшая (13), то "недоокаменевшая" (8, 18).

Известный кр

Подобные работы:

Актуально: