Может ли произведение двух последовательных натуральных чисел равняться произведению двух последовательных чётных чисел?

Постоянный пользователь нашего ресурса написал нам почту в 21:5 с просьбой предоставить развернутый ответ на его вопрос. Наши эксперты отнесли этот вопрос к разделу Разное. Для ответа был привлечен один из опытных специалистов, который занимается написанием студенческих работ.

Цитируем вопрос ваш вопрос

Может ли произведение двух последовательных натуральных чисел равняться произведению двух последовательных чётных чисел?

Разбор вопроса и ответ на него

Раздел 'ЕГЭ (школьный)', к которому был отнесён этот вопрос является не простой рубрикой. Для подготовки ответа на вопросы из этой рубрики специалист должен обладать широкими познаниями в различных научных областях. Однако в нашей компании таковые имеются.

Вы спрашивали:

Может ли произведение двух последовательных натуральных чисел равняться произведению двух последовательных чётных чисел?

Конечно этот ответ может полностью не раскрыть тему вопроса, но мы постарались сделать его максимально полным. Предлагаем ознакомиться с мнением эксперта по этой теме:

Нет, не может. Докажем методом от противного. Предположим, что найдутся два натуральных числа k и n такие, что n(n+1)=2k(2k+2). Отметим числа 2k и 2k+2 на числовой оси и рассмотрим два случая: n<2k и n>2k.
Если n<2k, то n+1<2k+2, поэтому n(n+1)<2k(2k+2). Противоречие.
Если n>2k, то n+1>2k+2, поэтому n(n+1)>2k(2k+2). Противоречие.

К нам на почту приходит много вопросов. Мы стараемся отвечать на все. Однако вы должны понимать, что большая загруженность увеличивает время ответа. Сейчас среднее время ответа равно 14:2.