Для заданных действительных чисел p и q найдите все значения, которые многочлен x^2+ px+q принимает на отрезке [-1; 1].
Постоянный пользователь нашего ресурса написал нам почту в 5:6 с просьбой предоставить развернутый ответ на его вопрос. Наши эксперты отнесли этот вопрос к разделу Разное. Для ответа был привлечен один из опытных специалистов, который занимается написанием студенческих работ.
Цитируем вопрос ваш вопрос
Для заданных действительных чисел p и q найдите все значения, которые многочлен x^2+ px+q принимает на отрезке [-1; 1].Разбор вопроса и ответ на него
Раздел 'ЕГЭ (школьный)', к которому был отнесён этот вопрос является не простой рубрикой. Для подготовки ответа на вопросы из этой рубрики специалист должен обладать широкими познаниями в различных научных областях. Однако в нашей компании таковые имеются.
Вы спрашивали:
Для заданных действительных чисел p и q найдите все значения, которые многочлен x^2+ px+q принимает на отрезке [-1; 1].Конечно этот ответ может полностью не раскрыть тему вопроса, но мы постарались сделать его максимально полным. Предлагаем ознакомиться с мнением эксперта по этой теме:
Функция y=x2+ px+q имеет на действительной оси одну точку минимума, соответствующую вершине параболы x0=-p/2. При x<x0 эта функция убывает, а при x>x0 – возрастает. Поэтому для множества А значений функции y=x2+ px+q на отрезке [-1; 1] имеем следующее:
Если p<-2, то x0>1 и А=[y(1); y(-1)]=[1+p+q; 1-p+q].
Если -2≤p≤2, то -1≤x0≤1, и А=[y(x0); max{y(-1); y(1)}]. Более точно, при -2≤p≤0 А=[q-p2/4; 1-p+q], а при 0<p≤2 А=[q-p2/4; 1+p+q].
Если p>2, то x0<-1 и А=[y(-1); y(1)]=[1-p+q; 1+p+q].
p<-2: А=[1+p+q; 1-p+q];
при -2≤p≤0: А=[q-p2/4; 1-p+q];
при 0<p≤2: А=[q-p2/4; 1+p+q];
при p>2: А=[1-p+q; 1+p+q].
К нам на почту приходит много вопросов. Мы стараемся отвечать на все. Однако вы должны понимать, что большая загруженность увеличивает время ответа. Сейчас среднее время ответа равно 14:2.