Белки и полипептиды

БЕЛКИ И ПОЛИПЕПТИДЫ

Белки играют исключительно важную роль в живой природе. Жизнь немыслима без различных по строению и функциям белков. Белки - это биополимеры сложного строения, мак­ромолекулы (протеины) которых, состоят из остатков аминокислот, соединен­ных между собой амидной (пептидной) связью. Кроме длинных полимерных цепей, построенных из остатков аминокислот (полипептидных цепей), в макромолекулу белка могут входить также остат­ки или молекулы других органических соединений. На одном кольце каждой пептидной цепи имеется свободная или ацилированная аминогруппа, на другом - свободная или амидированная карбоксильная группа.

Конец цепи с аминогруппой называется М-концом, конец цепи с карбоксильной группой — С-концом пептидной цепи. Между СО-груп­пой одной пептидной группировки и NH-группой другой пептидной группировки могут легко образовываться водородные связи.

Группы, входящие в состав радикала R аминокислот, могут вступать во вза­имодействие друг с другом, с посторонними веществами и с сосед­ними белковыми и иными молекулами, образуя сложные и разнооб­разные структуры.

В макромолекулу белка вхо­дит одна или несколько пептид­ных цепей, связанных друг с другом поперечными химически­ми связями, чаще всего через се­ру (дисульфидные мостики, обра­зуемые остатками цистеина). Химическую структуру пептидных цепей принято назы­вать первичной структу­рой белка или секвенцией.

Для построения простран­ственной структуры бел­ка пептидные цепи должны при­нять определенную, свойственную данному белку конфигурацию, ко­торая закрепляется водородными связями, возникающими между пептидными группировками от­дельных участков молекулярной цепи. По мере образования водо­родных связей пептидные цепи закручиваются в спирали, стремясь к образованию максималь­ного числа водородных связей и соответственно к энергетически наиболее выгодной конфигурации.

Впервые та­кая структура на основе рентгеноструктурного анализа была обнаружена при изучении главного белка волос и шер­сти—кератина Полингом американским физиком и химиком... Ее наз­вали а-структурой или а-спиралью. На один виток спирали приходится по 3,6—3,7 остатков аминокислот. Рас­стояние между витками около 0,54 миллиардной доле метра. Строение спирали стабилизируется внут­римолекулярными водородными связями.

При растяжении спираль мак­ромолекулы белка превращается в дру­гую структуру, напоминающую линей­ную.

Но образованию правильной спирали часто мешают силы отталкива­ния или притяжения, возникающие между группами аминокислот, или стерические препятствия, например, за счет образования пирролидиновых колец пролина и оксипролина, которые заставляют пептидную цепь резко изгибаться и препятствуют образованию спирали на некоторых ее участках. Далее отдельные участки макромолекулы белка ориентируются в пространстве, принимая в некоторых случаях достаточно вытянутую форму, а иногда сильноизогнутую, свернутую пространственную структуру.

Пространственная структура закреплена вследствие взаимодействия радикалов R и аминокислот с образованием дисульфидных мостиков, водородных связей, ионных пар или других химических либо физических связей. Именно пространственная структура белка определяет хими­ческие и биологические свойства белков.

В зависимости от пространственной структуры все белки делятся на два больших класса: фибриллярные (они используются природой как структурный материал) и глобулярные (ферменты, антитела, некоторые гормоны и др.).

Полипептидные цепи фибриллярных белков имеют форму спи­рали, которая закреплена расположенными вдоль цепи внутримоле­кулярными водородными связями. В волокнах фибриллярных белков закрученные пептидные цепи расположены параллельно оси волокна, они как бы ориентированы относительно друг друга, располагаются рядом, образуя нитевидные структу­ры и имеют высокую степень асимметрии. Фибриллярные белки плохо растворимы или совсем нерастворимы в воде. При растворении в воде они образуют растворы высокой вязкости. К фибриллярным белкам относятся белки, входящие в состав тканей и покровных образований. Это мио­зин—белок мышечных тканей; коллаген, являющийся основой седиментационных тканей и кожных покровов; кератин, входящий в со­став волос, роговых покровов, шерсти и перьев. К этому же классу белков относится белок натурального шелка - фиброин, вязкая сиропообразная жидкость, за­твердевающая на воздухе в прочную нерастворимую нить. Этот белок имеет вытянутые по­липептидные цепи, соединенные друг с другом межмолекулярными водородными связями, что и определяет, по-видимому, высокую механическую прочность натурального шелка.

Пептидные цепи глобулярных белков сильно изогнуты, свернуты и часто имеют форму жестких шариков—глобул. Молекулы глобу­лярных белков обладают низкой степенью асимметрии, они хорошо растворимы в воде, причем вязкость их растворов невелика. Это прежде всего белки крови—гемоглобин, альбумин, глобулин и др.

Следует отметить условность деления белков на фибриллярные и глобулярные, так как существует большое число белков с проме­жуточной структурой.

Свойства белка могут сильно изменяться при за­мене одной аминокислоты другой. Это объясняется изменением кон­фигураций пептидных цепей и условий образования пространствен­ной структуры белка, которая в конечном счете определяет его функ­ции в организме.

СОСТАВ И СВОЙСТВА БЕЛКОВ

Число аминокислотных остатков, входящих в молекулы отдельных белков, весьма различно: в инсулине 51, в миоглобине - около 140. Поэтому и относительная молекулярная масса белков колеблется в очень широких пределах - от 10 тысяч до многих миллионов На основе определения относительной молекулярной массы и элементарного анализа установлена эмпирическая формула белковой молекулы - гемоглобина крови (C738H1166O208S2Fe)4 Меньшая молекулярная масса может быть у простейших ферментов и некоторых гормонов белковой природы. Например, молекулярная масса гормона инсулина около 6500, а белка вируса гриппа — 320 000 000. Вещества белковой природы (состоящие из остатков аминокислот, соединенных между собой пептидной связью), имею­щие относительно меньшую молекулярную массу и меньшую сте­пень пространственной организации макромолекулы, называются полипептидами. Провести резкую границу между белками и полипептидами трудно. В большинстве случаев белки отличаются от других природных полимеров (каучука, крахмала, целлюлозы), тем, что чистый инди­видуальный белок содержит только молекулы одинакового строения и массы. Исключением является, например, желатина, в составе которой входят макромолекулы с молекулярной массой 12 000— 70000.

Строением белков объясняются их весьма разнообразные свой­ства. Они имеют разную растворимость: некоторые растворяются в воде, другие — в разбавленных растворах нейтральных солей, а некоторые совсем не обладают свойством растворимости (например, белки покровных тканей). При растворении белков в воде образуется своеобразная молекулярно-дисперсная система (раствор высокомолекулярного вещества). Некоторые белки могут быть вы­делены в виде кристаллов (белок куриного яйца, гемоглобина крови).

Белки играют важней­шую роль в жизнедеятельности всех организмов. При пищеварении белковые молекулы перевариваются до аминокислот, которые, будучи хорошо растворимы в водной среде, проникают в кровь и поступают во все ткани и клетки организма. Здесь наи­большая часть аминокислот расходуется на синтез белков различ­ных органов и тканей, часть—на синтез гормонов, ферментов и других биологически важных веществ, а остальные служат как энергетический материал. Т.е. белки выполняют каталитические (фермен­ты), регуляторные (гормоны), транспорт­ные (гемоглобин, церулоплазмин и др.), защитные (антитела, тромбин и др.) функции

Белки — важнейшие компоненты пищи человека и корма животных. Совокупность непрерывно протекающих химищеский превращений белков зани­мает ведущее место в обмене веществ орга­низмов. Скорость обновления белков у живых организмов зависит от содержания белков в пище, а также его биологической ценности, которая определяется наличием и соотношением незаменимых аминокислот

Белки растений беднее белков животного происхождения по содержа­нию незаменимых аминокислот, особен­но лизина, метионина, триптофана. Белки сои и картофеля по аминокислотному со­ставу наиболее близки белкам животных. Отсутствие в корме незаменимых аминокислот при­ходит к тяжёлым нарушениям азотистого обмена. Поэтому селекция зерновых культур направлена, в частности, и на повышение качества белкового состава зерна.

КЛАССИФИКАЦИЯ БЕЛКОВ

Белки подразделяются на две большие группы: простые белки, или протеины, и сложные белки, или протеиды.

При гидролизе протеинов в кислом водном растворе получают только а-аминокислоты. Гидролиз протеидов дает кроме амино­кислот и вещества небелковой природы (углеводы, нуклеиновые кислоты и др.); это соединения белковых веществ с небелковыми.

Протеины.

Альбумины хорошо растворяются в воде. Встречаются в моло­ке, яичном белке и крови.

Глобулины в воде не растворяются, но растворимы в разбавлен­ных растворах солей. К глобулинам принадлежат глобулины крови и мышечный белок миозин.

Глутелины растворяются только в разбавленных растворах ще­лочей. Встречаются в растениях.

Склеропротеины — нерастворимые белки. К склеропротеинам относятся кератины, белок кожи и соединительных тканей колла­ген, белок натурального шелка фиброин.

Протеиды построены из протеинов, соединенных с молекулами другого типа (простетическими группами).

Фосфопротеиды содержат молекулы фосфорной кислоты, свя­занные в виде сложного эфира у гидроксильной группы аминокисло­ты серина. К ним относится вителлин—белок, содержащийся в яичном желтке, белок молока казеин.

Гликопротеиды содержат остатки углеводов. Они входят в сос­тав хрящей, рогов, слюны.

Хромопротеиды содержат молекулу окрашенного вещества, обычно типа порфина. Самым важным хромопротеидом является гемоглобин — переносчик кислорода, окраши­вающий красные кровяные тельца.

Нуклеопротеиды — протеины, связанные с нуклеиновыми кис­лотами. Они представляют собой очень важные с биологической точ­ки зрения белки—составные части клеточных ядер. Нуклеопротеиды являются важнейшей составной частью виру­сов — возбудителей многих болезней.

Определение строения белков

Определение строения белков является очень сложной задачей, но за последние годы в химии белка достигнуты значительные успехи. Помимо методов получения высокомоле­кулярных синтетических полипептидов, построенных из большого чис­ла молекул одинаковых а-аминокислот, разработаны методы синтеза смешанных полипептидов с заранее заданным порядком чередования различных а-аминокислот путем постепенного их наращивания.

Полностью определена химическая структура нескольких белков: гормона инсулина, антибиотика грамицидин, фермента, расщепляющего нуклеи­новые кислоты, рибонуклеазы, гормона аденокортикотропина, белка вируса табачной мозаики, миоглобина, гемоглобина и др. Частично определена структура некото­рых других белков.

Изучение химического строения белка начинают с определения аминокислотного состава. Для этого используется главным образом метод гидролиза, т. е. нагревание белка с 6—10 моль/л соляной кислотой при температуре 100—110°С. Получают смесь а-аминокислот, из которой можно выделить индивидуальные аминокислоты.

Например, полный гидролиз одного трипептида приводит к образованию трех аминокислот:

Для количественного анализа этой смеси в настоя­щее время применяют ионообменную и бумажную хроматографию. Сконструированы специальные автоматические анализаторы ами­нокислот.

Итак, гидролиз белков, по существу, сводится к гидролизу полипептидных связей. К этому же сводится и процесс переваривание.

Разработаны также ферментативные методы ступенчатого рас­щепления белка. Некоторые ферменты расщепляют макромолекулу белка специфически — только в местах нахождения определенной аминокислоты. Так получают продукты ступенчатого расщепления — пептоны и пептиды, последующим анализом которых устанавлива­ют их аминокислотный состав.

Значительно более сложным является определение последова­тельности амидокислот в пептидных цепях белка. С этой целью пре­жде всего определяют N- и С-концы полипептидных цепей, при этом решаются два вопроса—идентифицируются концевые аминокислоты и определяется число пептидных цепей, входящих в состав макромо­лекул белка. Для определения N-концов пептидной цепи получают N-производное концевой аминокислоты пептида, которое идентифицируют после полного гидролиза пептида. С-концы пептидных цепей определяются избирательным отщеп­лением концевой аминокислоты с помощью специфического фермен­та — карбоксипептидазы и последующей идентификацией этой амино­кислоты. Если макромолекула белка состоит из двух (или более) пеп­тидных цепей, как в случае инсулина, то избирательно разрушают дисульфидные мостики окислением (например, над-муравьиной кислотой) и затем полученные полипептиды разделяют путем фракционирования на ионитах. Для определения последова­тельности расположения аминокислот в каждой полипептидной цепи ее подвергают частичному кислотному гидролизу и избиратель­ному расщеплению с помощью ферментов, каждый из которых раз­рывает полипептидную цепь только в определенных местах присоеди­нения какой-то одной определенной аминокислоты или одного типа аминокислот (основных, ароматических). Таким образом получают несколько наборов пептидов: которые разделяют, используя методы хроматографии и электрофореза. Строение коротких пептидов определяют последовательным от­щеплением и идентификацией концевых аминокислот упомянутыми выше методами, а большие пептиды подвергают дополнительному расщеплению с последующим разделением и определением строе­ния. Затем путем сложного сопоставления структуры различных уча­стков пептидной цепи воссоздают полную картину расположения аминокислот в макромолекуле белка. Работа эта очень трудоемкая, и для определения химической структуры белка требуется несколь­ко лет.

Для изучения пространственной структуры белка, последовательности соединения аминокислот в том или ином белке используют различные физико-химические методы, из которых наиболее эффек­тивными оказались метод ступенчатого расщепления и рентгеноструктурный анализ.

Рентгеноструктурный анализ - метод исследования атомной структуры в-ва с помощью дифракции рентгеновских лучей. Рентгеновские лучи взаимодействуют с электронными оболочками атомов. В результате этого взаимодейст­вия происходит дифракция рентгеновских лучей и на фотопленке получается дифракционная картина — пятна или окружности. Из дифракционной картины при помощи сложных расчетов устанавливают распределение электронной плотности в-ва, а по ней - род атомов и их расположение.

В настоящее время установлено, что большинство белков состоят из 22 качественно разных а-аминокислот.

При образовании молекулы белка или полипептида а-аминокислоты могут соединяться в различной последовательности. Возмож­но огромное число различных комбинаций. Так же как, пользуясь 20...30 буквами алфавита, можно написать текст любой длины, так и из 20 а-аминокислот можно образовать больше 1018 комбинаций. Существование различного типа полипептидов практически неогра­ничено.

Определение наличия белка:

Для идентификации белков и полипептидов используют специ­фические реакции на белки. Например:

а) биуретовая реакция

б) ксантопротеиновая реакция (появление желтого окрашивания при взаимодействии с онцентрированной азотной кислотой, кото­рое в присутствии аммиака становится оранжевым; реакция свя­зана с нитрованием остатков фенилаланина и тирозина);

в) реакция Миллона (образование желто-коричневого окраши­вания при взаимодействии с Hg(NО3)2+HNО3+HNO2

г) нингидриновая реакция

д) при нагревании белков со щелочью в присутствии солей свин­ца выпадает черный осадок PbS, что свидетельствует о присутствии серусодержащих аминокислот.

е) сильное нагревание вызывает не только денатурацию белков, но и разложение их с выделением летучих продуктов, обладающих запахом жженых перьев.

Белки обычно образуют коллоидные растворы. Многие реаген­ты вызывают осаждение белков — коагуляцию, которая может быть обратимой и необратимой. Например, этанол и ацетон коагу­лируют белки, но эта коагуляция является обратимой. В чистой воде коагулированные этим способом белки снова образуют кол­лоидный раствор. Обратимую коагуляцию вызывают также раст­воры некоторых солей (MgSO4 (NH4)2SO4 Na2SO4). Необратимую коагуляцию (денатурацию) белка вызывает кипячение, а также дей­ствие минеральных кислот, пикриновой кислоты, солей тяжелых металлов, танина.

Синтез пептидов

Синтез пептидов связан с рядом существенных трудностей. Преж­де всего, необходимы оптические активные изомеры а-аминокислот. Кроме того, требуются специальные приемы для осуществления последователь­ного образования пептидных связей в нужной нам последователь­ности а-аминокислот: защита аминогрупп, активация карбоксиль­ных групп, отщепление защитных групп, множество специальных реагентов.

Но грандиозная работа по анализу и синтезу белков в последний период революционизировалась благодаря использованию высокоэффективных автоматических приборов. К ним от­носят синтезаторы — установки для синтеза, круглосуточно работающие без человека по заданной программе. Это одно из проявлений компьюте­ризации в химии. Создание таких автоматов стало возможным после появления новых плодотворных химических идей. Синтезаторы появились после предложе­ния американским химиком P. Meрифилдом нового принципа — син­теза на полимерном носителе, обла­дающем определенными функцио­нальными группами.

Такой способ исключает необходимость выделения промежуточных продуктов на каждой стадии синтеза и легко подвергается автоматизации.

Изыскивая пути исусственного получения белка, ученые интенсивно изучают механизм его синтеза в ор­ганизмах. Ведь здесь он совершается в «мягких» условиях, удивительно чет­ко и с большой скоростью. (Молекула белка в клетке образуется всего за 2—3 с.) Выяснено, что синтез белков в организме осуществляется с учас­тием других высокомолекулярных ве­ществ—нуклеиновых кислот. В настоящее время человек уже глубоко познал механизм биосинтеза белка и приступил к искусственному получению важнейших белков на ос­нове тех же принципов, которые столь совершенно отработаны в процессе развития органического мира.

Кроме этого, промышленное полу­чение белков осуществляется посред­ством микробиологического синтеза. Оказалось, что, размножаясь на соответствующей питательной среде, некоторые микроорганизмы могут создавать обильную белковую массу. На от ходах гидролизного производства спирта из древесины, например, выращивают кормовые дрожжи для животноводства. Использование продуктов микробиологического синтеза в животноводстве позволяет значительно повышать его продуктивность.

Искусственное получение белка было актуальным вопросом уже в прошлом столетии, когда стало ясно, что белки построены из а-аминокислот с помощью амидных (пептидных) связей. Первые синтезы низкомолекулярных пептидов связаны с именем немецкого химика Э. Фишера. В 1903—1907 гг. Э. Фишер синтезировал полипептид, состоящий из 19 остатков аминокислот.



Подобные работы:

Актуально: